Abstract

We aim to investigate the mechanism of acetowhitening upon which the colposcopic diagnosis of cervical cancer is based. The changes in light scattering induced by acetic acid in intact cervical cancer cells and cellular components were studied using elastic light-scattering spectroscopy. After adding acetic acid to intact cancer cell culture samples (cell suspensions and attached monolayer cell cultures), a slight decrease in small-angle forward scattering was observed, while the large-angle scattering increased by a factor of 5–9, indicating that acetowhitening signals are mainly contributed from small-sized intracellular scattering structures. The cellular components of different sizes and masses were isolated to investigate their individual contribution to the changes of light scattering induced by acetic acid. The study provided the evidence that the cellular components of diameter smaller than 0.2  μm in the cytoplasm are the major contributors to the acetowhitening effect in whole cells, while the light scattering from the mitochondria are not sensitive to the acetic acid.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. C. Anderson, J. A. Jordan, A. R. Morse, and F. Sharp, A Text and Atlas of Integrated Colposcopy: for Colposcopists, Histopathologists and Cytologists (Chapman & Hall Medical, 1992).
  2. R. Lambert, J. F. Rey, and R. Sankaranarayanan, "Magnification and chromoscopy with the acetic acid test," Endoscopy 35, 437-445 (2003).
    [CrossRef] [PubMed]
  3. K. Ito, G. Caramori, S. Lim, T. Oates, K. F. Chung, P. J. Barnes, and I. M. Adcock, "Expression and activity of histone deacetylases in human asthmatic airways," Am. J. Respir. Crit. Care Med. 166, 392-396 (2002).
    [CrossRef] [PubMed]
  4. B. W. Pogue, H. B. Kaufman, A. Zelenchuk, W. Harper, G. C. Burke, E. E. Burke, and D. M. Harper, "Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions," J. Biomed. Opt. 6, 397-403 (2001).
    [CrossRef] [PubMed]
  5. C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans. Biomed. Eng. 48, 96-104 (2001).
    [CrossRef] [PubMed]
  6. T. T. Wu, J. Y. Qu, T. H. Cheung, S. F. Yim, and Y. F. Wong, "Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level," Opt. Express 13, 4963-4973 (2005).
    [CrossRef] [PubMed]
  7. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
    [CrossRef]
  8. V. Backman, R. Gurjar, K. Badizadegan, R. Dasari, I. Itzkan, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
    [CrossRef]
  9. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and substructure measured using angle-resolved low-coherence interferometry," Biophys. J. 82, 2256-2264 (2002).
    [CrossRef] [PubMed]
  10. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?" Opt. Express 5, 302-317 (1999).
    [CrossRef] [PubMed]
  11. H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9, 267-276 (2003).
    [CrossRef]
  12. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998).
    [CrossRef]
  13. R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38, 3651-3663 (1999).
    [CrossRef]
  14. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
    [CrossRef] [PubMed]
  15. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7, 378-387 (2002).
    [CrossRef] [PubMed]
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), 6 pp.
  17. R. Drezek, A. Dunn, and R. Richards-Kortum, "A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from cells over broad wavelength ranges," Opt. Express 6, 147-157 (2000).
    [CrossRef] [PubMed]

2005 (2)

T. T. Wu, J. Y. Qu, T. H. Cheung, S. F. Yim, and Y. F. Wong, "Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level," Opt. Express 13, 4963-4973 (2005).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
[CrossRef] [PubMed]

2003 (2)

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9, 267-276 (2003).
[CrossRef]

R. Lambert, J. F. Rey, and R. Sankaranarayanan, "Magnification and chromoscopy with the acetic acid test," Endoscopy 35, 437-445 (2003).
[CrossRef] [PubMed]

2002 (3)

K. Ito, G. Caramori, S. Lim, T. Oates, K. F. Chung, P. J. Barnes, and I. M. Adcock, "Expression and activity of histone deacetylases in human asthmatic airways," Am. J. Respir. Crit. Care Med. 166, 392-396 (2002).
[CrossRef] [PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and substructure measured using angle-resolved low-coherence interferometry," Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

2001 (2)

B. W. Pogue, H. B. Kaufman, A. Zelenchuk, W. Harper, G. C. Burke, E. E. Burke, and D. M. Harper, "Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions," J. Biomed. Opt. 6, 397-403 (2001).
[CrossRef] [PubMed]

C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans. Biomed. Eng. 48, 96-104 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (3)

1998 (2)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998).
[CrossRef]

Am. J. Respir. Crit. Care Med. (1)

K. Ito, G. Caramori, S. Lim, T. Oates, K. F. Chung, P. J. Barnes, and I. M. Adcock, "Expression and activity of histone deacetylases in human asthmatic airways," Am. J. Respir. Crit. Care Med. 166, 392-396 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biophys. J. (2)

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
[CrossRef] [PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and substructure measured using angle-resolved low-coherence interferometry," Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

Endoscopy (1)

R. Lambert, J. F. Rey, and R. Sankaranarayanan, "Magnification and chromoscopy with the acetic acid test," Endoscopy 35, 437-445 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

V. Backman, R. Gurjar, K. Badizadegan, R. Dasari, I. Itzkan, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9, 267-276 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans. Biomed. Eng. 48, 96-104 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

B. W. Pogue, H. B. Kaufman, A. Zelenchuk, W. Harper, G. C. Burke, E. E. Burke, and D. M. Harper, "Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions," J. Biomed. Opt. 6, 397-403 (2001).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

Other (2)

M. C. Anderson, J. A. Jordan, A. R. Morse, and F. Sharp, A Text and Atlas of Integrated Colposcopy: for Colposcopists, Histopathologists and Cytologists (Chapman & Hall Medical, 1992).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), 6 pp.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Schematic of the light-scattering spectroscopy setup.

Fig. 2
Fig. 2

(Color online) Light scattering from cell suspensions: (a) Angular-dependent light-scattering signals; (b)–(h) light-scattering spectra at multiple-scattering angles. Curves with solid circles: experimental data before the application of acetic acid. Curves with open circles: experimental data after the application of acetic acid.

Fig. 3
Fig. 3

(Color online) Light scattering from attached monolayer cells: (a) Angular-dependent light-scattering signals; (b)–(h) light-scattering spectra at multiple-scattering angles. Curves with solid circles: experimental data before the application of acetic acid. Curves with open circles: experimental data after the application of acetic acid.

Fig. 4
Fig. 4

(Color online) Light scattering from isolated nuclei suspensions: (a) Angular-dependent light-scattering signals (averaged intensity from 400 to 700   nm ); (b)–(h) light-scattering spectra at multiple-scattering angles. Curves with solid circles: experimental data before the application of acetic acid. Curves with open circles: experimental data after the application of acetic acid.

Fig. 5
Fig. 5

(Color online) Angular-dependent light-scattering signals (average intensity from 400 to 700   nm ): (a) mitochondrial fraction and (b) cytoplasmic fraction. Curves with solid circles: experimental data before the application of acetic acid. Curves with open circles: experimental data after the application of acetic acid.

Metrics