Abstract

The spatial distribution of optical rotation α and surviving linear polarization fraction βL of light scattered from cylindrical turbid chiral (glucose-containing) and achiral samples is studied using a linear Stokes polarimeter. α and βL are measured in and off the incident plane as the detection angle changes from the forward to the backward direction. The experimental results exhibit a complex dependence on the detection geometry: α is more sensitive to glucose presence off the incident plane, whereas βL exhibits larger effects in-plane, as validated by polarization sensitive Monte Carlo simulations. A rigorous methodology is presented for optimizing the experimental geometry in the polarimetric examinations of complex random systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. McNichols and G. L. Coté, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
    [CrossRef] [PubMed]
  2. D. Coté and I. A. Vitkin, "Balanced detection for low-noise precision polarimetric measurements of optically-active, multiply-scattering tissue phantoms," J. Biomed. Opt. 9, 213-220 (2004).
    [CrossRef] [PubMed]
  3. C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (Chapman & Hall, 1941).
  4. C. Djerassi, Optical Rotatory Dispersion (McGraw-Hill, 1960).
  5. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized light to discriminate short-path photons in a multiply scattering medium," Appl. Opt. 31, 6535-6546 (1992).
    [CrossRef] [PubMed]
  6. M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, "Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid," Opt. Commun. 132, 410-416 (1996).
    [CrossRef]
  7. M. Mehrübeoðlu, N. Kehtarnavaz, S. Rastegar, and L. V. Wang, "Effect of molecular concentrations in tissue-simulating phantoms on images obtained using diffuse reflectance polarimetry," Opt. Express 3, 286-297 (1998).
    [CrossRef]
  8. R. C. N. Studinski and I. A. Vitkin, "Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction," J. Biomed. Opt. 5, 330-337 (2000).
    [CrossRef] [PubMed]
  9. I. A. Vitkin and E. Hoskinson, "Polarization studies in multiply scattering chiral media," Opt. Eng. 39, 353-362 (2000).
    [CrossRef]
  10. I. A. Vitkin, R. D. Lazslo, and C. L. Whyman, "Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light," Opt. Express 10, 222-229 (2002).
    [PubMed]
  11. X. Wang, G. Yao, and L. V. Wang, "Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose," Appl. Opt. 41, 792-801 (2002).
    [CrossRef] [PubMed]
  12. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996).
    [CrossRef]
  13. J. Y. Qu and B. C. Wilson, "Monte Carlo modeling studies of the effect of physiological factors and other analytes on the determination of glucose concentration in vivo by near-infrared optical absorption and scattering measurements," J. Biomed. Opt. 2, 319-325 (1997).
    [CrossRef]
  14. M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
    [CrossRef] [PubMed]
  15. V. V. Tuchin, "Optical clearing of tissues and blood using the immersion method," J. Phys. D 38, 2497-2518 (2005).
    [CrossRef]
  16. M. Dogariu and T. Asakura, "Photon path length distribution from polarized backscattering in random media," Opt. Eng. 35, 2234-2239 (1996).
    [CrossRef]
  17. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue photons and biological cell suspensions," Appl. Opt. 36, 125-135 (1997).
    [CrossRef] [PubMed]
  18. M. J. Rakovic, G. W. Kattawar, M. Mehrübeoðlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408 (1999).
    [CrossRef]
  19. K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
    [CrossRef]
  20. B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
    [CrossRef]
  21. A. J. Hunt and D. R. Huffman, "A new polarization-modulated light scattering instrument," Rev. Sci. Instrum. 44, 1753-1762 (1973).
    [CrossRef]
  22. P. S. Hauge, "Recent developments in instrumentation in ellipsometry," Surf. Sci. 96, 108-140 (1980).
    [CrossRef]
  23. J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, "The optical polarization of the sun measured at a sensitivity of parts in 10 million," Nature 326, 270-273 (1987).
    [CrossRef]
  24. R. Anderson, "Measurement of Mueller matrices," Appl. Opt. 31, 11-13 (1992).
    [CrossRef] [PubMed]
  25. X. Guo, M. F. G. Wood, and I. A. Vitkin, "Effects of detection geometry on polarimetric measurements of scattered light from turbid media containing optically active glucose molecules," Proc. SPIE 5969, 59691k (2005).
  26. X. Guo, M. F. G. Wood, and I. A. Vitkin, "Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter," J. Biomed. Opt. 11, 041105 (2006).
    [CrossRef] [PubMed]
  27. D. Coté and I. A. Vitkin, "Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations," Opt. Express 13, 148-163 (2005).
    [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, "Electromagnetic theory," in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 46-56.
  29. E. Collett, Polarized Light: Fundamentals and Applications (Dekker, 1993).
  30. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  31. I. A. Vitkin and R. C. N. Studinski, "Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction," Opt. Commun. 190, 37-43 (2001).
    [CrossRef]
  32. M. Diem, G. M. Roberts, O. Lee, and A. Barlow, "Design and performance of an optimized dispersive infrared dichrograph," Appl. Spectrosc. 42, 20-27 (1988).
    [CrossRef]
  33. X. Guo, M. F. G. Wood, and A. Vitkin are preparing a manuscript to be titled, "Detection depth and sampling volume of polarized light in turbid media."
  34. C. F. Bohren and D. R. Huffman, "Appendix A," in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 477-483.
  35. B. Kaplan, G. Ledanois, and B. Drévillon, "Muller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulations," Appl. Opt. 40, 2769-2777 (2001).
    [CrossRef]
  36. F. Jaillon and H. Saint-Jalmes, "Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media," Appl. Opt. 42, 3290-3296 (2003).
    [CrossRef] [PubMed]
  37. K. Hadley and I. A. Vitkin, "Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media," J. Biomed. Opt. 7, 201-299 (2002).
    [CrossRef]

2006 (1)

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter," J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

2005 (3)

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Effects of detection geometry on polarimetric measurements of scattered light from turbid media containing optically active glucose molecules," Proc. SPIE 5969, 59691k (2005).

V. V. Tuchin, "Optical clearing of tissues and blood using the immersion method," J. Phys. D 38, 2497-2518 (2005).
[CrossRef]

D. Coté and I. A. Vitkin, "Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations," Opt. Express 13, 148-163 (2005).
[CrossRef] [PubMed]

2004 (1)

D. Coté and I. A. Vitkin, "Balanced detection for low-noise precision polarimetric measurements of optically-active, multiply-scattering tissue phantoms," J. Biomed. Opt. 9, 213-220 (2004).
[CrossRef] [PubMed]

2003 (2)

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

F. Jaillon and H. Saint-Jalmes, "Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media," Appl. Opt. 42, 3290-3296 (2003).
[CrossRef] [PubMed]

2002 (3)

2001 (2)

B. Kaplan, G. Ledanois, and B. Drévillon, "Muller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulations," Appl. Opt. 40, 2769-2777 (2001).
[CrossRef]

I. A. Vitkin and R. C. N. Studinski, "Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction," Opt. Commun. 190, 37-43 (2001).
[CrossRef]

2000 (3)

R. C. N. Studinski and I. A. Vitkin, "Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction," J. Biomed. Opt. 5, 330-337 (2000).
[CrossRef] [PubMed]

I. A. Vitkin and E. Hoskinson, "Polarization studies in multiply scattering chiral media," Opt. Eng. 39, 353-362 (2000).
[CrossRef]

R. J. McNichols and G. L. Coté, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
[CrossRef] [PubMed]

1999 (3)

K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
[CrossRef]

B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
[CrossRef]

M. J. Rakovic, G. W. Kattawar, M. Mehrübeoðlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408 (1999).
[CrossRef]

1998 (1)

1997 (2)

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue photons and biological cell suspensions," Appl. Opt. 36, 125-135 (1997).
[CrossRef] [PubMed]

J. Y. Qu and B. C. Wilson, "Monte Carlo modeling studies of the effect of physiological factors and other analytes on the determination of glucose concentration in vivo by near-infrared optical absorption and scattering measurements," J. Biomed. Opt. 2, 319-325 (1997).
[CrossRef]

1996 (3)

M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, "Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid," Opt. Commun. 132, 410-416 (1996).
[CrossRef]

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996).
[CrossRef]

M. Dogariu and T. Asakura, "Photon path length distribution from polarized backscattering in random media," Opt. Eng. 35, 2234-2239 (1996).
[CrossRef]

1992 (2)

1988 (1)

1987 (1)

J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, "The optical polarization of the sun measured at a sensitivity of parts in 10 million," Nature 326, 270-273 (1987).
[CrossRef]

1980 (1)

P. S. Hauge, "Recent developments in instrumentation in ellipsometry," Surf. Sci. 96, 108-140 (1980).
[CrossRef]

1973 (1)

A. J. Hunt and D. R. Huffman, "A new polarization-modulated light scattering instrument," Rev. Sci. Instrum. 44, 1753-1762 (1973).
[CrossRef]

Ablitt, B.

K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
[CrossRef]

Ablitt, B. P.

B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
[CrossRef]

Anderson, R.

Arimoto, H.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

Asakura, T.

M. Dogariu and T. Asakura, "Photon path length distribution from polarized backscattering in random media," Opt. Eng. 35, 2234-2239 (1996).
[CrossRef]

Badoz, J.

M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, "Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid," Opt. Commun. 132, 410-416 (1996).
[CrossRef]

Barlow, A.

Beauvoit, B.

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996).
[CrossRef]

Bigio, I. J.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, "Appendix A," in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 477-483.

C. F. Bohren and D. R. Huffman, "Electromagnetic theory," in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 46-56.

Bonner, R. F.

Brosseau, C.

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

Browne, C. A.

C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (Chapman & Hall, 1941).

Cameron, B. D.

Chance, B.

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996).
[CrossRef]

Chang, P. C. Y.

K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
[CrossRef]

B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
[CrossRef]

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Dekker, 1993).

Coté, D.

D. Coté and I. A. Vitkin, "Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations," Opt. Express 13, 148-163 (2005).
[CrossRef] [PubMed]

D. Coté and I. A. Vitkin, "Balanced detection for low-noise precision polarimetric measurements of optically-active, multiply-scattering tissue phantoms," J. Biomed. Opt. 9, 213-220 (2004).
[CrossRef] [PubMed]

Coté, G. L.

Diem, M.

Djerassi, C.

C. Djerassi, Optical Rotatory Dispersion (McGraw-Hill, 1960).

Dogariu, M.

M. Dogariu and T. Asakura, "Photon path length distribution from polarized backscattering in random media," Opt. Eng. 35, 2234-2239 (1996).
[CrossRef]

Drévillon, B.

Gandjbakhche, A. H.

Guo, X.

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter," J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Effects of detection geometry on polarimetric measurements of scattered light from turbid media containing optically active glucose molecules," Proc. SPIE 5969, 59691k (2005).

X. Guo, M. F. G. Wood, and A. Vitkin are preparing a manuscript to be titled, "Detection depth and sampling volume of polarized light in turbid media."

Hadley, K.

K. Hadley and I. A. Vitkin, "Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media," J. Biomed. Opt. 7, 201-299 (2002).
[CrossRef]

Hauge, P. S.

P. S. Hauge, "Recent developments in instrumentation in ellipsometry," Surf. Sci. 96, 108-140 (1980).
[CrossRef]

Henson, G. D.

J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, "The optical polarization of the sun measured at a sensitivity of parts in 10 million," Nature 326, 270-273 (1987).
[CrossRef]

Hielscher, A. H.

Hopcraft, K. I.

K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
[CrossRef]

B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
[CrossRef]

Hoskinson, E.

I. A. Vitkin and E. Hoskinson, "Polarization studies in multiply scattering chiral media," Opt. Eng. 39, 353-362 (2000).
[CrossRef]

Huffman, D. R.

A. J. Hunt and D. R. Huffman, "A new polarization-modulated light scattering instrument," Rev. Sci. Instrum. 44, 1753-1762 (1973).
[CrossRef]

C. F. Bohren and D. R. Huffman, "Electromagnetic theory," in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 46-56.

C. F. Bohren and D. R. Huffman, "Appendix A," in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 477-483.

Hunt, A. J.

A. J. Hunt and D. R. Huffman, "A new polarization-modulated light scattering instrument," Rev. Sci. Instrum. 44, 1753-1762 (1973).
[CrossRef]

Jaillon, F.

Jakeman, E.

B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
[CrossRef]

K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
[CrossRef]

Kaplan, B.

Kattawar, G. W.

Kehtarnavaz, N.

Kemp, J. C.

J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, "The optical polarization of the sun measured at a sensitivity of parts in 10 million," Nature 326, 270-273 (1987).
[CrossRef]

Kimura, M.

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996).
[CrossRef]

Lazslo, R. D.

Ledanois, G.

Lee, O.

Liu, H.

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996).
[CrossRef]

McNichols, R. J.

R. J. McNichols and G. L. Coté, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
[CrossRef] [PubMed]

Mehrübeoðlu, M.

Mourant, J. R.

Murakami, T.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

Powell, E. R.

J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, "The optical polarization of the sun measured at a sensitivity of parts in 10 million," Nature 326, 270-273 (1987).
[CrossRef]

Qu, J. Y.

J. Y. Qu and B. C. Wilson, "Monte Carlo modeling studies of the effect of physiological factors and other analytes on the determination of glucose concentration in vivo by near-infrared optical absorption and scattering measurements," J. Biomed. Opt. 2, 319-325 (1997).
[CrossRef]

Rakovic, M. J.

Rastegar, S.

Roberts, G. M.

Saint-Jalmes, H.

Schmitt, J. M.

Shimada, M.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

Silverman, M. P.

M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, "Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid," Opt. Commun. 132, 410-416 (1996).
[CrossRef]

Steiner, C. T.

J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, "The optical polarization of the sun measured at a sensitivity of parts in 10 million," Nature 326, 270-273 (1987).
[CrossRef]

Strange, W.

M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, "Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid," Opt. Commun. 132, 410-416 (1996).
[CrossRef]

Studinski, R. C. N.

I. A. Vitkin and R. C. N. Studinski, "Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction," Opt. Commun. 190, 37-43 (2001).
[CrossRef]

R. C. N. Studinski and I. A. Vitkin, "Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction," J. Biomed. Opt. 5, 330-337 (2000).
[CrossRef] [PubMed]

Tamura, M.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

Tarumi, M.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

Tuchin, V. V.

V. V. Tuchin, "Optical clearing of tissues and blood using the immersion method," J. Phys. D 38, 2497-2518 (2005).
[CrossRef]

Turpin, K. D.

B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
[CrossRef]

K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
[CrossRef]

Vitkin, A.

X. Guo, M. F. G. Wood, and A. Vitkin are preparing a manuscript to be titled, "Detection depth and sampling volume of polarized light in turbid media."

Vitkin, I. A.

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter," J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Effects of detection geometry on polarimetric measurements of scattered light from turbid media containing optically active glucose molecules," Proc. SPIE 5969, 59691k (2005).

D. Coté and I. A. Vitkin, "Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations," Opt. Express 13, 148-163 (2005).
[CrossRef] [PubMed]

D. Coté and I. A. Vitkin, "Balanced detection for low-noise precision polarimetric measurements of optically-active, multiply-scattering tissue phantoms," J. Biomed. Opt. 9, 213-220 (2004).
[CrossRef] [PubMed]

I. A. Vitkin, R. D. Lazslo, and C. L. Whyman, "Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light," Opt. Express 10, 222-229 (2002).
[PubMed]

K. Hadley and I. A. Vitkin, "Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media," J. Biomed. Opt. 7, 201-299 (2002).
[CrossRef]

I. A. Vitkin and R. C. N. Studinski, "Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction," Opt. Commun. 190, 37-43 (2001).
[CrossRef]

R. C. N. Studinski and I. A. Vitkin, "Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction," J. Biomed. Opt. 5, 330-337 (2000).
[CrossRef] [PubMed]

I. A. Vitkin and E. Hoskinson, "Polarization studies in multiply scattering chiral media," Opt. Eng. 39, 353-362 (2000).
[CrossRef]

M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, "Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid," Opt. Commun. 132, 410-416 (1996).
[CrossRef]

Walker, J. G.

K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
[CrossRef]

B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
[CrossRef]

Wang, L. V.

Wang, X.

Whyman, C. L.

Wilson, B. C.

J. Y. Qu and B. C. Wilson, "Monte Carlo modeling studies of the effect of physiological factors and other analytes on the determination of glucose concentration in vivo by near-infrared optical absorption and scattering measurements," J. Biomed. Opt. 2, 319-325 (1997).
[CrossRef]

Wood, M. F. G.

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter," J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Effects of detection geometry on polarimetric measurements of scattered light from turbid media containing optically active glucose molecules," Proc. SPIE 5969, 59691k (2005).

X. Guo, M. F. G. Wood, and A. Vitkin are preparing a manuscript to be titled, "Detection depth and sampling volume of polarized light in turbid media."

Yamada, Y.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

Yao, G.

Zerban, F. W.

C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (Chapman & Hall, 1941).

Appl. Opt. (7)

Appl. Spectrosc. (1)

J. Biomed. Opt. (7)

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter," J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

K. Hadley and I. A. Vitkin, "Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media," J. Biomed. Opt. 7, 201-299 (2002).
[CrossRef]

R. J. McNichols and G. L. Coté, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
[CrossRef] [PubMed]

D. Coté and I. A. Vitkin, "Balanced detection for low-noise precision polarimetric measurements of optically-active, multiply-scattering tissue phantoms," J. Biomed. Opt. 9, 213-220 (2004).
[CrossRef] [PubMed]

R. C. N. Studinski and I. A. Vitkin, "Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction," J. Biomed. Opt. 5, 330-337 (2000).
[CrossRef] [PubMed]

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996).
[CrossRef]

J. Y. Qu and B. C. Wilson, "Monte Carlo modeling studies of the effect of physiological factors and other analytes on the determination of glucose concentration in vivo by near-infrared optical absorption and scattering measurements," J. Biomed. Opt. 2, 319-325 (1997).
[CrossRef]

J. Phys. D (1)

V. V. Tuchin, "Optical clearing of tissues and blood using the immersion method," J. Phys. D 38, 2497-2518 (2005).
[CrossRef]

Nature (1)

J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, "The optical polarization of the sun measured at a sensitivity of parts in 10 million," Nature 326, 270-273 (1987).
[CrossRef]

Opt. Commun. (3)

K. D. Turpin, J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, B. Ablitt, and E. Jakeman, "The influence of particle size in active polarization imaging in scattering media," Opt. Commun. 168, 325-335 (1999).
[CrossRef]

M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, "Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid," Opt. Commun. 132, 410-416 (1996).
[CrossRef]

I. A. Vitkin and R. C. N. Studinski, "Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction," Opt. Commun. 190, 37-43 (2001).
[CrossRef]

Opt. Eng. (2)

M. Dogariu and T. Asakura, "Photon path length distribution from polarized backscattering in random media," Opt. Eng. 35, 2234-2239 (1996).
[CrossRef]

I. A. Vitkin and E. Hoskinson, "Polarization studies in multiply scattering chiral media," Opt. Eng. 39, 353-362 (2000).
[CrossRef]

Opt. Express (3)

Phys. Med. Biol. (1)

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Phys. Med. Biol. 48, 2373-2390 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

X. Guo, M. F. G. Wood, and I. A. Vitkin, "Effects of detection geometry on polarimetric measurements of scattered light from turbid media containing optically active glucose molecules," Proc. SPIE 5969, 59691k (2005).

Rev. Sci. Instrum. (1)

A. J. Hunt and D. R. Huffman, "A new polarization-modulated light scattering instrument," Rev. Sci. Instrum. 44, 1753-1762 (1973).
[CrossRef]

Surf. Sci. (1)

P. S. Hauge, "Recent developments in instrumentation in ellipsometry," Surf. Sci. 96, 108-140 (1980).
[CrossRef]

Waves Random Media (1)

B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, "Imaging and multiple scattering through media containing optically active particles," Waves Random Media 9, 561-572 (1999).
[CrossRef]

Other (7)

C. F. Bohren and D. R. Huffman, "Electromagnetic theory," in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 46-56.

E. Collett, Polarized Light: Fundamentals and Applications (Dekker, 1993).

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (Chapman & Hall, 1941).

C. Djerassi, Optical Rotatory Dispersion (McGraw-Hill, 1960).

X. Guo, M. F. G. Wood, and A. Vitkin are preparing a manuscript to be titled, "Detection depth and sampling volume of polarized light in turbid media."

C. F. Bohren and D. R. Huffman, "Appendix A," in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 477-483.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simplified linear Stokes polarimeter setup, outlined within the dotted lines. A, analyzer; QW, quarter-wave plate; PEM, photoelastic modulator; S i , Stokes vector of the incident beam; S e , Stokes vector of the emerging beam; S f , Stokes vector of the beam reaching the detector. All angles are measured with respect to the optical table.

Fig. 2
Fig. 2

Schematic of the linear Stokes polarimeter. VTS, vertical translation stage; C, optical chopper; P, polarizer; I, iris; L 1 and L 2 , plano–convex lenses; QW, quarter-wave plate; PEM, photoelastic modulator; A, analyzer; D, detector; LIA, lock-in amplifier; S, signal input; R, reference input; PC personal computer. The analyzing block rotates isocentrically in the horizontal ( z = 0   mm ) plane around the sample's long axis, forming a detection angle θ with the forward (transmission) direction. Off-plane ( z 0   mm ) detection is accomplished by the vertical adjustment of the laser translation stage.

Fig. 3
Fig. 3

Polarization state of light scattered from highly turbid achiral medium ( μ s = 100 cm 1 , d = 4.1 μ m,   C = 0   M ) measured at θ = 0 ° and 135° while z changes from −4 to 4   mm . The symbols are experimental data, and the lines are Monte Carlo simulation results. (a) Optical rotation; (b) surviving linear polarization fraction; (c) normalized total intensity. In this and subsequent plots, the error bars are smaller than the symbol sizes.

Fig. 4
Fig. 4

Monte Carlo simulations from the same data set as in Fig. 3. (a) Average path length of all detected photons; (b) average number of scattering events experienced by the detected photons.

Fig. 5
Fig. 5

Monte Carlo simulations of spatial distribution ( 4 mm z 4 mm , 0 ° θ 180 ° ) of the polarization states of light scattered from highly turbid achiral medium ( μ s = 100 cm 1 , d = 4.1 μ m , C = 0   M ). (a) Optical rotation; (b) surviving linear polarization fraction; (c) normalized total intensity.

Fig. 6
Fig. 6

Polarization states change with glucose concentration in highly turbid medium ( μ s = 100 cm 1 in the absence of glucose, d = 4.1 μ m , C = 0.06 0.9   M ) at θ = 135 ° , z = 0 mm , and 3 mm . The symbols are experimental data, and the lines are Monte Carlo simulation results. (a) Optical rotation versus glucose concentration; (b) surviving linear polarization fraction versus glucose concentration.

Fig. 7
Fig. 7

Polarization state changes (α) with increasing glucose concentration ( 0 0.9   M ) in a series of highly turbid samples measured at θ = 135 ° at z = 2 mm . The symbols are experimental data and the lines are a guide for the eye. (a) d = 1.4 μ m , μ s 200 cm 1 ; (b) d = 1 μ m , μ s 200 cm 1 . The scattering coefficient values are given for the glucose-free suspensions (left-most point on each graph); the reduction in μ s is 10 % by the time C = 0.9   M glucose concentration is reached.

Tables (2)

Tables Icon

Table 1 Calculated Scattering Efficiency and Scattering Anisotropy

Tables Icon

Table 2 Calculated Scattering Coefficient

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

S = ( I Q U V ) T
S i = ( 1 1 0 0 ) T .
S e = ( I Q U V ) T , = I ( 1 q u v ) T ,
S f = ( I f Q f U f V f ) T ,
S f = M A M P E M M Q W S e ,
S f = I 2 ( 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 ) ( 1 0 1 0 0 1 0 0 0 0 cos δ sin δ 0 0 sin δ cos δ ) × ( 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 ) ( 1 q u v ) .
I f ( t ) = I 2 [ 1 q sin δ + u cos δ ] ,
sin δ = sin ( δ 0 sin ω t ) = 2 n = 1 J 2 n 1 ( δ 0 ) sin ( 2 n 1 ) ω t = 2 J 1 ( δ 0 ) sin ω t + …   ,
cos δ = cos ( δ 0 sin ω t ) = J 0 ( δ 0 ) + 2 n = 1 J 2 n ( δ 0 ) cos 2 n ω t = J 0 ( δ 0 ) + 2 J 2 ( δ 0 ) cos 2 ω t + …   ,
I f ( t ) = I 2 [ 1 2 J 1 ( δ 0 ) q sin ω t + 2 J 2 ( δ 0 ) u cos 2 ω t + ] .
V ( t ) = V d c + V a c 1 + V a c 2 + …   ,
V dc = 1.111 V F ,
V ac 1 = 2 V 1 f ,
V ac 2 = 2 V 2 f ,
q = 1 2 × 0.519 × 1.111 V 1 f V F = 1.227 V 1 f V F ,
u = 1 2 × 0.432 × 1.111 V 2 f V F = 1.474 V 2 f V F .
α = 1 2 tan 1 ( U Q ) = 1 2 tan 1 ( u q ) ,
β L = Q 2 + U 2 I = q 2 + u 2 .
μ s = f v ( 4 3 π r 3 ) Q sca π r 2 = 3 Q sca f w ρ 0 / 4 r ρ ,

Metrics