## Abstract

Complex-conjugate-resolved Fourier-domain optical coherence tomography,
where the quadrature components of the interferogram are obtained by simultaneous
acquisition of the first and second harmonics of the phase-modulated interferogram, is
applied to multisurface test targets and biological samples. The method provides efficient
suppression of the complex-conjugate, dc, and autocorrelation artifacts. A complex-conjugate
rejection ratio as high as
70\text{\hspace{0.17em} dB} is achieved.

© 2007 Optical Society of America

Full Article |

PDF Article
### Equations (91)

Equations on this page are rendered with MathJax. Learn more.

(1)
70\text{\hspace{0.17em} dB}
(3)
<40\text{\hspace{0.17em} dB}
(5)
20\text{\hspace{0.17em} dB}
(6)
25\text{\hspace{0.17em} dB}
(7)
>30\text{\hspace{0.17em} dB}
(8)
>50\text{\hspace{0.17em} dB}
(9)
45\text{\hspace{0.17em} dB}
(10)
70\text{\hspace{0.17em} dB}
(11)
800\text{\hspace{0.17em} nm}
(12)
27\text{\hspace{0.17em} nm}
(13)
f=1.5\text{\hspace{0.17em} kHz}
(14)
600\text{\hspace{0.17em}}\text{lines}/\text{mm}
(15)
0.3\text{\hspace{0.17em} nm}
(16)
770\u2013830\text{\hspace{0.17em} nm}
(18)
30\text{\hspace{0.17em} ms}
(19)
1300\text{\hspace{0.17em} nm}
(20)
85\text{\hspace{0.17em} nm}
(21)
\left(f=23\text{\hspace{0.17em} Hz}\right)
(23)
600\text{lines}/\text{mm}
(24)
0.3\text{\hspace{0.17em} nm}
(25)
1220\u20131375\text{\hspace{0.17em} nm}
(26)
200\text{\hspace{0.17em} Hz}
(27)
$${I}_{\text{SI}}\left(\omega ,t\right)={I}_{\text{R}}\left(\omega \right)+{I}_{\text{S}}\left(\omega \right)+2{\left[{I}_{\text{R}}\left(\omega \right){I}_{\text{S}}\left(\omega \right)\right]}^{1/2}\times \text{cos}\left[\Delta {\varphi}_{\text{S}}\left(\omega \right)+{\varphi}_{\text{0}}\left(\omega ,t\right)\right]\text{,}$$
(28)
{I}_{\text{R}}\left(\omega \right)
(29)
{I}_{\text{S}}\left(\omega \right)
(30)
\Delta {\varphi}_{\text{S}}\left(\omega \right)
(31)
{\varphi}_{0}\left(\omega ,t\right)
(32)
$${\varphi}_{0}\left(\omega ,t\right)={a}_{m}\left(\omega \right)\text{sin \hspace{0.17em}}{\omega}_{m}t\text{,}$$
(34)
{a}_{m}\left(\omega \right)
(35)
\left({J}_{0},{J}_{1},{J}_{2}\text{, \hspace{0.17em} \u2026}\right)
(36)
$${I}_{\text{SI}}\left(\omega ,t\right)={I}_{\text{R}}\left(\omega \right)+{I}_{\text{S}}\left(\omega \right)+2{\left[{I}_{\text{R}}\left(\omega \right){I}_{\text{S}}\left(\omega \right)\right]}^{1/2}\left\{{J}_{0}[{a}_{m}\left(\omega \right)-2{J}_{1}\left[{a}_{m}\left(\omega \right)\right]\mathrm{sin}\text{\hspace{0.17em}}{\omega}_{m}t\text{\hspace{0.17em} sin \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)+2{J}_{2}\left[{a}_{m}\left(\omega \right)\right]\text{cos \hspace{0.17em} 2}{\omega}_{m}t\text{\hspace{0.17em} cos \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)-2{J}_{3}\left[{a}_{m}\left(\omega \right)\right]\mathrm{sin}\text{\hspace{0.17em}}3{\omega}_{m}t\text{\hspace{0.17em} sin \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)+2{J}_{4}\left[{a}_{m}\left(\omega \right)\right]\text{cos \hspace{0.17em}}4{\omega}_{m}t\text{\hspace{0.17em} cos \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)-\dots \right\}\text{.}$$
(37)
\left({H}_{1}\right)
(38)
\left({H}_{2}\right)
(39)
$${H}_{1}\left[\omega ,\Delta {\varphi}_{\text{S}}\left(\omega \right)\right]=-4{J}_{1}\left[{a}_{m}\left(\omega \right)\right]{\left[{I}_{\text{R}}\left(\omega \right){I}_{\text{S}}\left(\omega \right)\right]}^{1/2}\times \text{sin \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)\text{,}$$
(40)
$${H}_{2}\left[\omega ,\Delta {\varphi}_{\text{S}}\left(\omega \right)\right]=4{J}_{2}\left[{a}_{m}\left(\omega \right)\right]{\left[{I}_{\text{R}}\left(\omega \right){I}_{\text{S}}\left(\omega \right)\right]}^{1/2}\times \text{cos \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right).$$
(43)
$$f\left(\tau \right)={\Im}^{-1}\left\{\beta {H}_{2}\left[\omega ,\Delta {\varphi}_{\text{S}}\left(\omega \right)\right]-i{H}_{1}\left[\omega ,\Delta {\varphi}_{\text{S}}\left(\omega \right)\right]\right\}.$$
(44)
$$\beta ={J}_{1}\left[{a}_{m}\left(\omega \right)\right]/{J}_{2}\left[{a}_{m}\left(\omega \right)\right]$$
(49)
0.8\le {a}_{m}/\text{rad}\le 3.5
(52)
{a}_{m}\left({\omega}_{i}\right)
(55)
$${a}_{m}\left({\omega}_{i}\right)={{a}_{m}}^{0}{\omega}_{i}/{\omega}_{0}\text{,}$$
(56)
{\omega}_{0}\text{,}
(57)
$$\beta \left({\omega}_{i}\right)={J}_{1}({{a}_{m}}^{0}{\omega}_{i}/{\omega}_{0})/{J}_{2}({{a}_{m}}^{0}{\omega}_{i}/{\omega}_{0})\mathrm{.}$$
(59)
\beta \left({\omega}_{i}\right)
(62)
45\text{\hspace{0.17em} dB}
(65)
128\times 200\text{\hspace{0.17em} pixels}
(66)
1300\text{\hspace{0.17em} nm}
(69)
40\text{\hspace{0.17em} dB}
(70)
70\text{\hspace{0.17em} dB}
(71)
70\text{\hspace{0.17em} dB}
(73)
\left({H}_{1}\right)
(74)
\left({H}_{2}\right)
(77)
\left({H}_{1}\right)
(78)
\left({H}_{3}\right)
(82)
\lambda =800\text{\hspace{0.17em} nm}
(83)
{{a}_{m}}^{0}=0.908\text{\hspace{0.17em} rad}
(85)
\lambda =800\text{\hspace{0.17em} nm}
(86)
{{a}_{m}}^{0}=0.908\text{\hspace{0.17em} rad}
(88)
\lambda =1300\text{\hspace{0.17em} nm}
(89)
{{a}_{m}}^{0}=2.77\text{\hspace{0.17em} rad}
(91)
380\text{\hspace{0.17em} pixels}\text{\hspace{0.17em}}\left(\text{2 \hspace{0.17em} mm}\right)