Abstract

We study the use of individual multimode fibers for the purposes of microendoscopy. We discuss the question of image decomposition in the several modes propagating over the fiber and their scattering at the truncated fiber end. We derive analytically the scattering matrix of the “fiber-to-air” interface, we quantify the extent of intermodal coupling, and we evaluate the radiation diagram from the fiber end. Results show that intermodal coupling is weak, so that it appears possible to “capture” an external image and transmit the same through the fiber, after appropriate phase correction, without excessive distortion.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Orthogonality breaking through few-mode optical fiber

Francois Parnet, Julien Fade, and Mehdi Alouini
Appl. Opt. 55(10) 2508-2520 (2016)

Stabilization of transmission function: theory for an ultrathin endoscope of one multimode fiber

Maxim A. Bolshtyansky and Boris Y. Zel’dovich
Appl. Opt. 36(16) 3673-3681 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription