Abstract

Laser emission, consisting of three primary colors, is generated by frequency conversions of the second-harmonic emission of a picosecond (120ps) Nd:YAG laser by means of stimulated Raman scattering and subsequent four-wave Raman mixing in molecular deuterium. In the double-pass configuration, the fundamental beam (532nm,14.16mJ,100%) is converted to blue (459nm,1.71mJ,12.1%), green (532nm,7.04mJ,49.7%), and red (632nm,4.90mJ,34.6%), resulting in a total conversion efficiency of 96.4%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, and R. Paschotta, "Powerful red-green-blue laser source pumped with a mode-locked thin disk laser," Opt. Lett. 29, 1921-1923 (2004).
    [CrossRef] [PubMed]
  2. R. Wallenstein, "Process and apparatus for generating at least three laser beams of different wavelength for the display of color video pictures," U.S. Patent 5,828,424 (27 October 1998).
  3. "JenLab WhiteLight/10W modulated white light laser," specifications in a catalog published by JenaOptik (Germany).
  4. E. Innerhofer, F. Brunner, S. V. Marchese, and R. Paschotta, "Analysis of nonlinear wavelength conversion system for a red-green-blue laser-projection source," J. Opt. Soc. Am. B 23, 265-275 (2006).
    [CrossRef]
  5. K. Kincade, "Laser-based projectors target consumer market," Laser Focus World (December 2005), pp. 63-66.
  6. T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emission lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
    [CrossRef]
  7. L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, and T. Imasaka, "A multipass hydrogen Raman shifter for the generation of broadband multifrequencies," Rev. Sci. Instrum. 73, 2200-2202 (2002).
    [CrossRef]
  8. A. D. Papayannis, G. N. Tsikrikas, and A. A. Serafetinides, "Generation of UV and VIS laser light by stimulated Raman scattering in H2, D2, and H2/He using a pulsed Nd:YAG laser at 355 nm," Appl. Phys. B 67, 563-568 (1998).
    [CrossRef]
  9. K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
    [CrossRef]
  10. Y. Hirakawa, T. Tomooka, and T. Imasaka, "Thermal loss mechanism in the generation of multifrequency laser emission via stimulated Raman scattering and four-wave Raman mixing studied by photothermal refraction spectroscopy," Appl. Phys. B 70, 355-359 (2000).
    [CrossRef]
  11. S. Sogomonian, L. Niggl, and M. Maier, "Nonplanar phase-matching of stimulated anti-Stokes Raman scattering pumped by a Bessel beam," Opt. Commun. 162, 261-266 (1999).
    [CrossRef]
  12. D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
    [CrossRef]
  13. L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, and H. van den Bergh, "Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers," Appl. Opt. 36, 5026-5043 (1997).
    [CrossRef] [PubMed]
  14. A. Tünnermann, C. Momma, K. Mossavi, C. Windolph, and B. Wellegehausen, "Generation of tunable short-pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses," IEEE J. Quantum Electron. 29, 1233-1238 (1993).
    [CrossRef]
  15. T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
    [CrossRef]
  16. M. Suzuki, S. Wada, and H. Tashiro, "Temporally resolved ring-shaped patterns beyond the phase-matching angle in the Stokes and anti-Stokes waves," J. Opt. Soc. Am. B 14, 1672-1679 (1997).
    [CrossRef]
  17. H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis," Appl. Phys. B 65, 1-4 (1997).
    [CrossRef]
  18. H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
    [CrossRef]
  19. K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).
  20. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  21. F. Benabid, F. County, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

F. Benabid, F. County, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, and T. Imasaka, "A multipass hydrogen Raman shifter for the generation of broadband multifrequencies," Rev. Sci. Instrum. 73, 2200-2202 (2002).
[CrossRef]

2000 (1)

Y. Hirakawa, T. Tomooka, and T. Imasaka, "Thermal loss mechanism in the generation of multifrequency laser emission via stimulated Raman scattering and four-wave Raman mixing studied by photothermal refraction spectroscopy," Appl. Phys. B 70, 355-359 (2000).
[CrossRef]

1999 (1)

S. Sogomonian, L. Niggl, and M. Maier, "Nonplanar phase-matching of stimulated anti-Stokes Raman scattering pumped by a Bessel beam," Opt. Commun. 162, 261-266 (1999).
[CrossRef]

1998 (2)

A. D. Papayannis, G. N. Tsikrikas, and A. A. Serafetinides, "Generation of UV and VIS laser light by stimulated Raman scattering in H2, D2, and H2/He using a pulsed Nd:YAG laser at 355 nm," Appl. Phys. B 67, 563-568 (1998).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

1997 (4)

M. Suzuki, S. Wada, and H. Tashiro, "Temporally resolved ring-shaped patterns beyond the phase-matching angle in the Stokes and anti-Stokes waves," J. Opt. Soc. Am. B 14, 1672-1679 (1997).
[CrossRef]

L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, and H. van den Bergh, "Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers," Appl. Opt. 36, 5026-5043 (1997).
[CrossRef] [PubMed]

T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis," Appl. Phys. B 65, 1-4 (1997).
[CrossRef]

1993 (1)

A. Tünnermann, C. Momma, K. Mossavi, C. Windolph, and B. Wellegehausen, "Generation of tunable short-pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses," IEEE J. Quantum Electron. 29, 1233-1238 (1993).
[CrossRef]

1992 (1)

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

1989 (1)

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emission lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

1986 (1)

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Benabid, F.

F. Benabid, F. County, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. County, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Brunner, F.

Calpini, B.

County, F.

F. Benabid, F. County, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

de Schoulepnikoff, L.

Hanna, D. C.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

Hirakawa, Y.

L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, and T. Imasaka, "A multipass hydrogen Raman shifter for the generation of broadband multifrequencies," Rev. Sci. Instrum. 73, 2200-2202 (2002).
[CrossRef]

Y. Hirakawa, T. Tomooka, and T. Imasaka, "Thermal loss mechanism in the generation of multifrequency laser emission via stimulated Raman scattering and four-wave Raman mixing studied by photothermal refraction spectroscopy," Appl. Phys. B 70, 355-359 (2000).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis," Appl. Phys. B 65, 1-4 (1997).
[CrossRef]

Imasaka, T.

L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, and T. Imasaka, "A multipass hydrogen Raman shifter for the generation of broadband multifrequencies," Rev. Sci. Instrum. 73, 2200-2202 (2002).
[CrossRef]

Y. Hirakawa, T. Tomooka, and T. Imasaka, "Thermal loss mechanism in the generation of multifrequency laser emission via stimulated Raman scattering and four-wave Raman mixing studied by photothermal refraction spectroscopy," Appl. Phys. B 70, 355-359 (2000).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis," Appl. Phys. B 65, 1-4 (1997).
[CrossRef]

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emission lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

Innerhofer, E.

Ishibashi, N.

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emission lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

Ito, Y.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Kasai, H.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Kawano, H.

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis," Appl. Phys. B 65, 1-4 (1997).
[CrossRef]

Kawasaki, S.

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emission lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

Kincade, K.

K. Kincade, "Laser-based projectors target consumer market," Laser Focus World (December 2005), pp. 63-66.

Knight, J. C.

F. Benabid, F. County, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Kushawaha, V.

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Losev, L. L.

L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, and T. Imasaka, "A multipass hydrogen Raman shifter for the generation of broadband multifrequencies," Rev. Sci. Instrum. 73, 2200-2202 (2002).
[CrossRef]

Maier, M.

S. Sogomonian, L. Niggl, and M. Maier, "Nonplanar phase-matching of stimulated anti-Stokes Raman scattering pumped by a Bessel beam," Opt. Commun. 162, 261-266 (1999).
[CrossRef]

Major, L.

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Marchese, S. V.

Michael, A.

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Mitev, V.

Momma, C.

A. Tünnermann, C. Momma, K. Mossavi, C. Windolph, and B. Wellegehausen, "Generation of tunable short-pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses," IEEE J. Quantum Electron. 29, 1233-1238 (1993).
[CrossRef]

Mossavi, K.

A. Tünnermann, C. Momma, K. Mossavi, C. Windolph, and B. Wellegehausen, "Generation of tunable short-pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses," IEEE J. Quantum Electron. 29, 1233-1238 (1993).
[CrossRef]

Nagasaka, K.

T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
[CrossRef]

Niggl, L.

S. Sogomonian, L. Niggl, and M. Maier, "Nonplanar phase-matching of stimulated anti-Stokes Raman scattering pumped by a Bessel beam," Opt. Commun. 162, 261-266 (1999).
[CrossRef]

Nishida, M.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Oniki, K.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Otsuka, H.

L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, and T. Imasaka, "A multipass hydrogen Raman shifter for the generation of broadband multifrequencies," Rev. Sci. Instrum. 73, 2200-2202 (2002).
[CrossRef]

Papayannis, A. D.

A. D. Papayannis, G. N. Tsikrikas, and A. A. Serafetinides, "Generation of UV and VIS laser light by stimulated Raman scattering in H2, D2, and H2/He using a pulsed Nd:YAG laser at 355 nm," Appl. Phys. B 67, 563-568 (1998).
[CrossRef]

Paschotta, R.

Pointer, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

Pratt, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

Russell, P. St. J.

F. Benabid, F. County, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Saruta, K.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Sato, K.

T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
[CrossRef]

Sentrayan, K.

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Serafetinides, A. A.

A. D. Papayannis, G. N. Tsikrikas, and A. A. Serafetinides, "Generation of UV and VIS laser light by stimulated Raman scattering in H2, D2, and H2/He using a pulsed Nd:YAG laser at 355 nm," Appl. Phys. B 67, 563-568 (1998).
[CrossRef]

Shinozaki, T.

T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
[CrossRef]

Simeonov, V.

Sogomonian, S.

S. Sogomonian, L. Niggl, and M. Maier, "Nonplanar phase-matching of stimulated anti-Stokes Raman scattering pumped by a Bessel beam," Opt. Commun. 162, 261-266 (1999).
[CrossRef]

Suda, A.

T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
[CrossRef]

Südmeyer, T.

Suzuki, M.

Taguchi, A.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Takasaki, T.

T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
[CrossRef]

Tamada, H.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Tashiro, H.

T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
[CrossRef]

M. Suzuki, S. Wada, and H. Tashiro, "Temporally resolved ring-shaped patterns beyond the phase-matching angle in the Stokes and anti-Stokes waves," J. Opt. Soc. Am. B 14, 1672-1679 (1997).
[CrossRef]

Tomooka, T.

Y. Hirakawa, T. Tomooka, and T. Imasaka, "Thermal loss mechanism in the generation of multifrequency laser emission via stimulated Raman scattering and four-wave Raman mixing studied by photothermal refraction spectroscopy," Appl. Phys. B 70, 355-359 (2000).
[CrossRef]

Tsikrikas, G. N.

A. D. Papayannis, G. N. Tsikrikas, and A. A. Serafetinides, "Generation of UV and VIS laser light by stimulated Raman scattering in H2, D2, and H2/He using a pulsed Nd:YAG laser at 355 nm," Appl. Phys. B 67, 563-568 (1998).
[CrossRef]

Tünnermann, A.

A. Tünnermann, C. Momma, K. Mossavi, C. Windolph, and B. Wellegehausen, "Generation of tunable short-pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses," IEEE J. Quantum Electron. 29, 1233-1238 (1993).
[CrossRef]

van den Bergh, H.

Wada, S.

Wallenstein, R.

R. Wallenstein, "Process and apparatus for generating at least three laser beams of different wavelength for the display of color video pictures," U.S. Patent 5,828,424 (27 October 1998).

Wellegehausen, B.

A. Tünnermann, C. Momma, K. Mossavi, C. Windolph, and B. Wellegehausen, "Generation of tunable short-pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses," IEEE J. Quantum Electron. 29, 1233-1238 (1993).
[CrossRef]

Windolph, C.

A. Tünnermann, C. Momma, K. Mossavi, C. Windolph, and B. Wellegehausen, "Generation of tunable short-pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses," IEEE J. Quantum Electron. 29, 1233-1238 (1993).
[CrossRef]

Yamaguchi, M.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Yamashita, K.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

Yoshimura, Y.

L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, and T. Imasaka, "A multipass hydrogen Raman shifter for the generation of broadband multifrequencies," Rev. Sci. Instrum. 73, 2200-2202 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (5)

A. D. Papayannis, G. N. Tsikrikas, and A. A. Serafetinides, "Generation of UV and VIS laser light by stimulated Raman scattering in H2, D2, and H2/He using a pulsed Nd:YAG laser at 355 nm," Appl. Phys. B 67, 563-568 (1998).
[CrossRef]

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Y. Hirakawa, T. Tomooka, and T. Imasaka, "Thermal loss mechanism in the generation of multifrequency laser emission via stimulated Raman scattering and four-wave Raman mixing studied by photothermal refraction spectroscopy," Appl. Phys. B 70, 355-359 (2000).
[CrossRef]

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emission lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis," Appl. Phys. B 65, 1-4 (1997).
[CrossRef]

IEEE J. Quantum Electron. (4)

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

A. Tünnermann, C. Momma, K. Mossavi, C. Windolph, and B. Wellegehausen, "Generation of tunable short-pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses," IEEE J. Quantum Electron. 29, 1233-1238 (1993).
[CrossRef]

T. Takasaki, A. Suda, K. Sato, T. Shinozaki, K. Nagasaka, and H. Tashiro, "Ortho-deuterium Raman laser using the S0(2) rotational transition in the mid-infrared region," IEEE J. Quantum Electron. 33, 2174-2177 (1997).
[CrossRef]

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

F. Benabid, F. County, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Sogomonian, L. Niggl, and M. Maier, "Nonplanar phase-matching of stimulated anti-Stokes Raman scattering pumped by a Bessel beam," Opt. Commun. 162, 261-266 (1999).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, and T. Imasaka, "A multipass hydrogen Raman shifter for the generation of broadband multifrequencies," Rev. Sci. Instrum. 73, 2200-2202 (2002).
[CrossRef]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Other (4)

K. Kincade, "Laser-based projectors target consumer market," Laser Focus World (December 2005), pp. 63-66.

K. Saruta, H. Kasai, M. Nishida, M. Yamaguchi, Y. Ito, K. Yamashita, A. Taguchi, K. Oniki, and H. Tamada, "Nanometer-order control of MEMS ribbons for blazed grating light valves," MEMS 2006 Istanbul 19th IEEE International Conference on Microelectronic Test Structures (IEEE, 2006).

R. Wallenstein, "Process and apparatus for generating at least three laser beams of different wavelength for the display of color video pictures," U.S. Patent 5,828,424 (27 October 1998).

"JenLab WhiteLight/10W modulated white light laser," specifications in a catalog published by JenaOptik (Germany).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus. A beam splitter was inserted into the beam path to measure the pulse energy of the backscattered laser beam from hydrogen in a Raman cell. Prism 2 was inserted into the beam path to measure the pulse energy of the laser beam transmitted from the Raman cell (single-pass configuration).

Fig. 2
Fig. 2

Dependences of deuterium pressure on the pulse energy of the laser beam for three primary colors:(a) single-pass experiment, (b) double-pass experiment. (A) Fundamental, 532 nm , (B) red, 632 nm , and (C) blue, 459 nm .

Fig. 3
Fig. 3

Photographs of beam patterns obtained by passing the beam through a prism and by projection on a white screen:(a) blue, (b) green, and (c) red.

Fig. 4
Fig. 4

Dependences of hydrogen pressure on the pulse energy of the laser beam for three colors:(a) single-pass experiment, (b) double-pass experiment. (A) Fundamental beam, 532 nm , (B) red beam, 683 nm , and (C) blue beam, 436 nm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G = exp ( g R I P l ) ,
g R = 32 π 3 c 2 Δ N n s 2 h ω s 3 Δ ω R ( σ Ω ) ,
I = ( 9 ω s 2 / 16 c 4 ε 0 2 n s n i n p 2 ) | χ FWRM ( 3 ) | 2 l 2 I i I p 2 × sinc 2 ( Δ k l / 2 ) ,

Metrics