Abstract

The development of in situ chemical sensors is critical for present-day expeditionary oceanography and the new mode of ocean observing systems that we are entering. New sensors take a significant amount of time to develop; therefore, validation of techniques in the laboratory for use in the ocean environment is necessary. Laser-induced breakdown spectroscopy (LIBS) is a promising in situ technique for oceanography. Laboratory investigations on the feasibility of using LIBS to detect analytes in bulk liquids at oceanic pressures were carried out. LIBS was successfully used to detect dissolved Na, Mn, Ca, K, and Li at pressures up to 2.76×107 Pa. The effects of pressure, laser-pulse energy, interpulse delay, gate delay, temperature, and NaCl concentration on the LIBS signal were examined. An optimal range of laser-pulse energies was found to exist for analyte detection in bulk aqueous solutions at both low and high pressures. No pressure effect was seen on the emission intensity for Ca and Na, and an increase in emission intensity with increased pressure was seen for Mn. Using the dual-pulse technique for several analytes, a very short interpulse delay resulted in the greatest emission intensity. The presence of NaCl enhanced the emission intensity for Ca, but had no effect on peak intensity of Mn or K. Overall, increased pressure, the addition of NaCl to a solution, and temperature did not inhibit detection of analytes in solution and sometimes even enhanced the ability to detect the analytes. The results suggest that LIBS is a viable chemical sensing method for in situ analyte detection in high-pressure environments such as the deep ocean.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brech and L. Cross, "Optical microemission stimulated by a a ruby MASER," Appl. Spectrosc. 16, 59 (1962).
  2. V. Majidi and M. Joseph, "Spectroscopic applications of laser-induced plasmas," Crit. Rev. Anal. Chem. 23, 143-162 (1992).
  3. L. Radziemski, "Review of analytical applications of laser plasmas and laser ablation, 1987-1994," Microchem. J. 50, 218-234 (1994).
    [CrossRef]
  4. D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).
  5. K. Song, Y. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).
  6. J. Sneddon and Y. Lee, "Novel and recent applications of elemental determination by laser-induced breakdown spectroscopy," Anal. Lett. 32, 2143-2162 (1999).
  7. D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trend. Analyt. Chem. 17, 453-461 (1998).
    [CrossRef]
  8. W. Lee, J. Wu, Y. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
    [CrossRef]
  9. B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
    [CrossRef]
  10. Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
    [CrossRef]
  11. W. Seyfried, Jr., K. Johnson, and M. C. Tivey, In-situ sensors: their development and application for the study of chemical, physical and biological systems at mid-ocean ridges, NSF/Ridge Sponsored Workshop Report (2000).
  12. "The next generation of in situ biological and chemical sensors in the ocean: a workshop report," (2004). URL http://www.whoi.edu/institutes/OLI/activities/symposialowbarsensors.htm.
  13. K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).
  14. T. Dickey, "The role of new technology in advancing ocean biogeochemical studies," Oceanography 14, 108-120 (2001).
  15. M. Varney, ed., Chemical Sensors in Oceanography (Gordon and Breach, 2000).
  16. A. Pichahchy, D. Cremers, and M. Ferris, "Elemental analysis of metals under water using laser-induced breakdown spectroscopy," Spectrochim. Acta B 52, 25-39 (1997).
    [CrossRef]
  17. P. Fichet, D. Menut, R. Brennetot, E. Vors, and A. Rivoallan, "Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an echelle spectrometer," Appl. Opt. 42, 6029-6039 (2003).
  18. P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, "Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy," Anal. Chim. Acta 429, 269-278 (2001).
    [CrossRef]
  19. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, "Trace element analysis in water by the laser-induced breakdown spectroscopy technique," Appl. Spectrosc. 51, 1102-1105 (1997).
    [CrossRef]
  20. O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
    [CrossRef]
  21. J. Wachter and D. Cremers, "Determination of uranium in solution using laser-induced breakdown spectroscopy," Appl. Spectrosc. 41, 1042-1048 (1987).
    [CrossRef]
  22. A. Kuwako, Y. Uchida, and K. Maeda, "Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy," Appl. Opt. 42, 6052-6056 (2003).
  23. V. Rai, F. Yuch, and J. Singh, "Study of laser-induced breakdown emission from liquid under double pulse excitation," Appl. Opt. 42, 2094-2101 (2003).
  24. J.-S. Huang, C.-B. Ke, and K.-C. Lin, "Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets," Spectrochim. Acta Part B 59(3), 321-326 (2004).
    [CrossRef]
  25. X. Pu and N. H. Cheung, "ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: plume reheating with a second Nd:YAG laser pulse," Appl. Spectrosc. 57, 588-590 (1997).
    [CrossRef]
  26. W. Ho, C. Ng, and N. Cheung, "Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength," Appl. Spectrosc. 51, 87-91 (1997).
    [CrossRef]
  27. S. Nakamura, Y. Ito, and K. Sone, "Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses," Anal. Chem. 68, 2981-2986 (1996).
    [CrossRef]
  28. K. Lo and N. Cheung, "ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions," Appl. Spectrosc. 56, 682-688 (2002).
    [CrossRef]
  29. L. St-Onge, E. Kwong, M. Sabsabi, and E. Vadas, "Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy," J. Pharm. Biomed. Anal. 36, 277-284 (2004).
    [CrossRef]
  30. D. Cremers, L. Radziemski, and T. Loree, "Spectrochemical analysis of liquids using the laser spark," Anal. Chem. 38, 721-729 (1984).
  31. R. Knopp, F. Scherbaum, and J. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).
  32. W. Pearman, J. Scaffidi, and S. M. Angel, "Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry," Appl. Opt. 42, 6085-6093 (2003).
  33. C. Hanisch, J. Liermann, U. Panne, and R. Niessner, "Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS)," Anal. Chim. Acta 346, 23-25 (1997).
    [CrossRef]
  34. M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, "Detection of carbon in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy," Spectrochim. Acta 57, 701-709 (2002).
    [CrossRef]
  35. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, "Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions," Appl. Spectrosc. 60, 786-790 (2006).
    [CrossRef]
  36. C. Aragon, J. Aguilers, and J. Campos, "Determination of carbon content in molten steel using laser-induced breakdown spectroscopy," Appl. Spectrosc. 47, 606-608 (1993).
    [CrossRef]
  37. J. Yun, R. Klenze, and J. Kim, "Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt simulants: Part II. Analyses of molten glass samples," Appl. Spectrosc. 56, 852-858 (2002).
    [CrossRef]
  38. A. Rai, F. Yueh, and J. Singh, "Laser-induced breakdown spectroscopy of molten aluminum alloy," Appl. Opt. 42, 2078-2084 (2003).
  39. L. Blevins, C. Shaddix, S. M. Sickafoose, and P. M. Walsh, "Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces," Appl. Opt. 42, 6107-6118 (2003).
  40. K. Von Damm, "Chemistry of hydrothermal vent fluids from 9°-10°N, East Pacific Rise: 'time zero,' the immediate posteruptive period," J. Geophys. Res. 105, 11203-11222 (2000).
    [CrossRef]
  41. D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
    [CrossRef]
  42. R. Noll, "Terms and notations for laser-induced breakdown spectroscopy," Anal. Bioanal. Chem. 385, 214-218 (2006).
    [CrossRef]
  43. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, "Laser-induced breakdown in aqueous media," Prog. Quantum Electron. 21, 155-248 (1997).
    [CrossRef]
  44. J. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, and J. Wright, Seawater: Its Composition, Properties and Behaviour (The Open University, 1989).

2006 (2)

2004 (6)

W. Lee, J. Wu, Y. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).

J.-S. Huang, C.-B. Ke, and K.-C. Lin, "Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets," Spectrochim. Acta Part B 59(3), 321-326 (2004).
[CrossRef]

L. St-Onge, E. Kwong, M. Sabsabi, and E. Vadas, "Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy," J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef]

2003 (6)

2002 (3)

2001 (2)

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, "Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy," Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

T. Dickey, "The role of new technology in advancing ocean biogeochemical studies," Oceanography 14, 108-120 (2001).

2000 (2)

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

K. Von Damm, "Chemistry of hydrothermal vent fluids from 9°-10°N, East Pacific Rise: 'time zero,' the immediate posteruptive period," J. Geophys. Res. 105, 11203-11222 (2000).
[CrossRef]

1999 (1)

J. Sneddon and Y. Lee, "Novel and recent applications of elemental determination by laser-induced breakdown spectroscopy," Anal. Lett. 32, 2143-2162 (1999).

1998 (1)

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trend. Analyt. Chem. 17, 453-461 (1998).
[CrossRef]

1997 (9)

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, "Trace element analysis in water by the laser-induced breakdown spectroscopy technique," Appl. Spectrosc. 51, 1102-1105 (1997).
[CrossRef]

A. Pichahchy, D. Cremers, and M. Ferris, "Elemental analysis of metals under water using laser-induced breakdown spectroscopy," Spectrochim. Acta B 52, 25-39 (1997).
[CrossRef]

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).

K. Song, Y. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

C. Hanisch, J. Liermann, U. Panne, and R. Niessner, "Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS)," Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

X. Pu and N. H. Cheung, "ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: plume reheating with a second Nd:YAG laser pulse," Appl. Spectrosc. 57, 588-590 (1997).
[CrossRef]

W. Ho, C. Ng, and N. Cheung, "Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength," Appl. Spectrosc. 51, 87-91 (1997).
[CrossRef]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, "Laser-induced breakdown in aqueous media," Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

1996 (2)

S. Nakamura, Y. Ito, and K. Sone, "Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses," Anal. Chem. 68, 2981-2986 (1996).
[CrossRef]

R. Knopp, F. Scherbaum, and J. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).

1994 (1)

L. Radziemski, "Review of analytical applications of laser plasmas and laser ablation, 1987-1994," Microchem. J. 50, 218-234 (1994).
[CrossRef]

1993 (1)

1992 (1)

V. Majidi and M. Joseph, "Spectroscopic applications of laser-induced plasmas," Crit. Rev. Anal. Chem. 23, 143-162 (1992).

1987 (1)

1984 (1)

D. Cremers, L. Radziemski, and T. Loree, "Spectrochemical analysis of liquids using the laser spark," Anal. Chem. 38, 721-729 (1984).

1962 (1)

F. Brech and L. Cross, "Optical microemission stimulated by a a ruby MASER," Appl. Spectrosc. 16, 59 (1962).

Aguilers, J.

Angel, S. M.

Aragon, C.

Arca, G.

Arp, Z.

Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Beddows, D.

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Blevins, L.

Brech, F.

F. Brech and L. Cross, "Optical microemission stimulated by a a ruby MASER," Appl. Spectrosc. 16, 59 (1962).

Brennetot, R.

Brown, J.

J. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, and J. Wright, Seawater: Its Composition, Properties and Behaviour (The Open University, 1989).

Butterfield, D. A.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Byrne, R.

K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).

Campos, J.

Castle, B.

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trend. Analyt. Chem. 17, 453-461 (1998).
[CrossRef]

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).

Chave, A. D.

Cheung, N.

Cheung, N. H.

Ciucci, A.

Colling, A.

J. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, and J. Wright, Seawater: Its Composition, Properties and Behaviour (The Open University, 1989).

Cremers, D.

Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

A. Pichahchy, D. Cremers, and M. Ferris, "Elemental analysis of metals under water using laser-induced breakdown spectroscopy," Spectrochim. Acta B 52, 25-39 (1997).
[CrossRef]

J. Wachter and D. Cremers, "Determination of uranium in solution using laser-induced breakdown spectroscopy," Appl. Spectrosc. 41, 1042-1048 (1987).
[CrossRef]

D. Cremers, L. Radziemski, and T. Loree, "Spectrochemical analysis of liquids using the laser spark," Anal. Chem. 38, 721-729 (1984).

Cremers, D. A.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Cross, L.

F. Brech and L. Cross, "Optical microemission stimulated by a a ruby MASER," Appl. Spectrosc. 16, 59 (1962).

Daly, K.

K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).

Deguchi, Y.

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, "Detection of carbon in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy," Spectrochim. Acta 57, 701-709 (2002).
[CrossRef]

Delaney, J. R.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Dickey, T.

T. Dickey, "The role of new technology in advancing ocean biogeochemical studies," Oceanography 14, 108-120 (2001).

Dickson, A.

K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).

Embley, R. E.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Feely, R. A.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Ferris, M.

A. Pichahchy, D. Cremers, and M. Ferris, "Elemental analysis of metals under water using laser-induced breakdown spectroscopy," Spectrochim. Acta B 52, 25-39 (1997).
[CrossRef]

Fichet, P.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

P. Fichet, D. Menut, R. Brennetot, E. Vors, and A. Rivoallan, "Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an echelle spectrometer," Appl. Opt. 42, 6029-6039 (2003).

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, "Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy," Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Gallager, S.

K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, "Laser-induced breakdown in aqueous media," Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Hanisch, C.

C. Hanisch, J. Liermann, U. Panne, and R. Niessner, "Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS)," Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Harris, R. D.

Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Ho, W.

Holden, J. F.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Huang, J.-S.

J.-S. Huang, C.-B. Ke, and K.-C. Lin, "Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets," Spectrochim. Acta Part B 59(3), 321-326 (2004).
[CrossRef]

Ito, Y.

S. Nakamura, Y. Ito, and K. Sone, "Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses," Anal. Chem. 68, 2981-2986 (1996).
[CrossRef]

Iwasaki, S.

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, "Detection of carbon in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy," Spectrochim. Acta 57, 701-709 (2002).
[CrossRef]

Johnson, K.

W. Seyfried, Jr., K. Johnson, and M. C. Tivey, In-situ sensors: their development and application for the study of chemical, physical and biological systems at mid-ocean ridges, NSF/Ridge Sponsored Workshop Report (2000).

Jonasson, I. R.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Joseph, M.

V. Majidi and M. Joseph, "Spectroscopic applications of laser-induced plasmas," Crit. Rev. Anal. Chem. 23, 143-162 (1992).

Kaiser, J.

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Ke, C.-B.

J.-S. Huang, C.-B. Ke, and K.-C. Lin, "Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets," Spectrochim. Acta Part B 59(3), 321-326 (2004).
[CrossRef]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, "Laser-induced breakdown in aqueous media," Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Kim, J.

J. Yun, R. Klenze, and J. Kim, "Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt simulants: Part II. Analyses of molten glass samples," Appl. Spectrosc. 56, 852-858 (2002).
[CrossRef]

R. Knopp, F. Scherbaum, and J. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).

Klenze, R.

Knopp, R.

R. Knopp, F. Scherbaum, and J. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).

Kukhlevsky, S.

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Kuwako, A.

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, and E. Vadas, "Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy," J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef]

Lacour, J.-L.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Lawrence-Snyder, M.

Lee, W.

W. Lee, J. Wu, Y. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Lee, Y.

W. Lee, J. Wu, Y. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

J. Sneddon and Y. Lee, "Novel and recent applications of elemental determination by laser-induced breakdown spectroscopy," Anal. Lett. 32, 2143-2162 (1999).

K. Song, Y. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).

Liermann, J.

C. Hanisch, J. Liermann, U. Panne, and R. Niessner, "Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS)," Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Lilley, M. D.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Lin, K.-C.

J.-S. Huang, C.-B. Ke, and K.-C. Lin, "Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets," Spectrochim. Acta Part B 59(3), 321-326 (2004).
[CrossRef]

Liska, M.

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Lo, K.

Loree, T.

D. Cremers, L. Radziemski, and T. Loree, "Spectrochemical analysis of liquids using the laser spark," Anal. Chem. 38, 721-729 (1984).

Maeda, K.

Majidi, V.

V. Majidi and M. Joseph, "Spectroscopic applications of laser-induced plasmas," Crit. Rev. Anal. Chem. 23, 143-162 (1992).

Massoth, G. J.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Mauchien, P.

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, "Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy," Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Maurice, S.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

McDuff, R. E.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Menut, D.

Michel, A. P. M.

Moulin, C.

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, "Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy," Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ito, and K. Sone, "Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses," Anal. Chem. 68, 2981-2986 (1996).
[CrossRef]

Ng, C.

Niessner, R.

C. Hanisch, J. Liermann, U. Panne, and R. Niessner, "Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS)," Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Noda, M.

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, "Detection of carbon in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy," Spectrochim. Acta 57, 701-709 (2002).
[CrossRef]

Noll, R.

R. Noll, "Terms and notations for laser-induced breakdown spectroscopy," Anal. Bioanal. Chem. 385, 214-218 (2006).
[CrossRef]

Oschwald, D.

Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Palleschi, V.

Panne, U.

C. Hanisch, J. Liermann, U. Panne, and R. Niessner, "Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS)," Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Park, D.

J. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, and J. Wright, Seawater: Its Composition, Properties and Behaviour (The Open University, 1989).

Parker, G. R.

Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Pearman, W.

Perry, M.

K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).

Phillips, J.

J. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, and J. Wright, Seawater: Its Composition, Properties and Behaviour (The Open University, 1989).

Pichahchy, A.

A. Pichahchy, D. Cremers, and M. Ferris, "Elemental analysis of metals under water using laser-induced breakdown spectroscopy," Spectrochim. Acta B 52, 25-39 (1997).
[CrossRef]

Pu, X.

Radziemski, L.

L. Radziemski, "Review of analytical applications of laser plasmas and laser ablation, 1987-1994," Microchem. J. 50, 218-234 (1994).
[CrossRef]

D. Cremers, L. Radziemski, and T. Loree, "Spectrochemical analysis of liquids using the laser spark," Anal. Chem. 38, 721-729 (1984).

Rai, A.

Rai, V.

Rastelli, S.

Rivoallan, A.

Rockwell, B. A.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, "Laser-induced breakdown in aqueous media," Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Roe, K. K.

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Rothery, D.

J. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, and J. Wright, Seawater: Its Composition, Properties and Behaviour (The Open University, 1989).

Rusak, D.

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trend. Analyt. Chem. 17, 453-461 (1998).
[CrossRef]

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).

Sabsabi, M.

L. St-Onge, E. Kwong, M. Sabsabi, and E. Vadas, "Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy," J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef]

Salle, B.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Samek, O.

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Scaffidi, J.

Scherbaum, F.

R. Knopp, F. Scherbaum, and J. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).

Seyfried, W.

W. Seyfried, Jr., K. Johnson, and M. C. Tivey, In-situ sensors: their development and application for the study of chemical, physical and biological systems at mid-ocean ridges, NSF/Ridge Sponsored Workshop Report (2000).

Shaddix, C.

Sickafoose, S. M.

Singh, J.

Smith, B.

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trend. Analyt. Chem. 17, 453-461 (1998).
[CrossRef]

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).

Sneddon, J.

W. Lee, J. Wu, Y. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

J. Sneddon and Y. Lee, "Novel and recent applications of elemental determination by laser-induced breakdown spectroscopy," Anal. Lett. 32, 2143-2162 (1999).

K. Song, Y. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).

Sone, K.

S. Nakamura, Y. Ito, and K. Sone, "Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses," Anal. Chem. 68, 2981-2986 (1996).
[CrossRef]

Song, K.

K. Song, Y. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, and E. Vadas, "Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy," J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef]

Telle, H.

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Tivey, M.

K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).

Tivey, M. C.

W. Seyfried, Jr., K. Johnson, and M. C. Tivey, In-situ sensors: their development and application for the study of chemical, physical and biological systems at mid-ocean ridges, NSF/Ridge Sponsored Workshop Report (2000).

Tognoni, E.

Uchida, Y.

Vadas, E.

L. St-Onge, E. Kwong, M. Sabsabi, and E. Vadas, "Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy," J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef]

Varney, M.

M. Varney, ed., Chemical Sensors in Oceanography (Gordon and Breach, 2000).

Von Damm, K.

K. Von Damm, "Chemistry of hydrothermal vent fluids from 9°-10°N, East Pacific Rise: 'time zero,' the immediate posteruptive period," J. Geophys. Res. 105, 11203-11222 (2000).
[CrossRef]

Vors, E.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

P. Fichet, D. Menut, R. Brennetot, E. Vors, and A. Rivoallan, "Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an echelle spectrometer," Appl. Opt. 42, 6029-6039 (2003).

Wachter, J.

Wagner, J.-F.

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, "Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy," Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Walsh, P. M.

Wayne, D.

Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Wiens, R. C.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Winefordner, J.

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trend. Analyt. Chem. 17, 453-461 (1998).
[CrossRef]

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).

Wright, J.

J. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, and J. Wright, Seawater: Its Composition, Properties and Behaviour (The Open University, 1989).

Wu, J.

W. Lee, J. Wu, Y. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Yoshikawa, N.

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, "Detection of carbon in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy," Spectrochim. Acta 57, 701-709 (2002).
[CrossRef]

Young, J.

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Yuch, F.

Yueh, F.

Yun, J.

Anal. Bioanal. Chem. (1)

R. Noll, "Terms and notations for laser-induced breakdown spectroscopy," Anal. Bioanal. Chem. 385, 214-218 (2006).
[CrossRef]

Anal. Chem. (2)

S. Nakamura, Y. Ito, and K. Sone, "Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses," Anal. Chem. 68, 2981-2986 (1996).
[CrossRef]

D. Cremers, L. Radziemski, and T. Loree, "Spectrochemical analysis of liquids using the laser spark," Anal. Chem. 38, 721-729 (1984).

Anal. Chim. Acta (2)

C. Hanisch, J. Liermann, U. Panne, and R. Niessner, "Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS)," Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, "Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy," Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Anal. Lett. (1)

J. Sneddon and Y. Lee, "Novel and recent applications of elemental determination by laser-induced breakdown spectroscopy," Anal. Lett. 32, 2143-2162 (1999).

Appl. Opt. (6)

Appl. Spectrosc. (9)

X. Pu and N. H. Cheung, "ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: plume reheating with a second Nd:YAG laser pulse," Appl. Spectrosc. 57, 588-590 (1997).
[CrossRef]

W. Ho, C. Ng, and N. Cheung, "Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength," Appl. Spectrosc. 51, 87-91 (1997).
[CrossRef]

K. Lo and N. Cheung, "ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions," Appl. Spectrosc. 56, 682-688 (2002).
[CrossRef]

J. Wachter and D. Cremers, "Determination of uranium in solution using laser-induced breakdown spectroscopy," Appl. Spectrosc. 41, 1042-1048 (1987).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, "Trace element analysis in water by the laser-induced breakdown spectroscopy technique," Appl. Spectrosc. 51, 1102-1105 (1997).
[CrossRef]

F. Brech and L. Cross, "Optical microemission stimulated by a a ruby MASER," Appl. Spectrosc. 16, 59 (1962).

M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, "Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions," Appl. Spectrosc. 60, 786-790 (2006).
[CrossRef]

C. Aragon, J. Aguilers, and J. Campos, "Determination of carbon content in molten steel using laser-induced breakdown spectroscopy," Appl. Spectrosc. 47, 606-608 (1993).
[CrossRef]

J. Yun, R. Klenze, and J. Kim, "Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt simulants: Part II. Analyses of molten glass samples," Appl. Spectrosc. 56, 852-858 (2002).
[CrossRef]

Appl. Spectrosc. Rev. (2)

K. Song, Y. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).

W. Lee, J. Wu, Y. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Crit. Rev. Anal. Chem. (2)

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).

V. Majidi and M. Joseph, "Spectroscopic applications of laser-induced plasmas," Crit. Rev. Anal. Chem. 23, 143-162 (1992).

Fresenius J. Anal. Chem. (1)

R. Knopp, F. Scherbaum, and J. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).

J. Geophys. Res. (1)

K. Von Damm, "Chemistry of hydrothermal vent fluids from 9°-10°N, East Pacific Rise: 'time zero,' the immediate posteruptive period," J. Geophys. Res. 105, 11203-11222 (2000).
[CrossRef]

J. Pharm. Biomed. Anal. (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E. Vadas, "Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy," J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef]

Mar. Technol. Soc. J. (1)

K. Daly, R. Byrne, A. Dickson, S. Gallager, M. Perry, and M. Tivey, "Chemical and biological sensors for time-series research: current status and new directions," Mar. Technol. Soc. J. 38, 121-143 (2004).

Microchem. J. (1)

L. Radziemski, "Review of analytical applications of laser plasmas and laser ablation, 1987-1994," Microchem. J. 50, 218-234 (1994).
[CrossRef]

Oceanography (1)

T. Dickey, "The role of new technology in advancing ocean biogeochemical studies," Oceanography 14, 108-120 (2001).

Opt. Eng. (1)

O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Philos. Trans. R. Soc. A (1)

D. A. Butterfield, I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney, "Seafloor eruptions and evolution of hydrothermal fluid chemistry," Philos. Trans. R. Soc. A 355, 369-386 (1997).
[CrossRef]

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, "Laser-induced breakdown in aqueous media," Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Spectrochim. Acta (1)

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, "Detection of carbon in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy," Spectrochim. Acta 57, 701-709 (2002).
[CrossRef]

Spectrochim. Acta B (1)

A. Pichahchy, D. Cremers, and M. Ferris, "Elemental analysis of metals under water using laser-induced breakdown spectroscopy," Spectrochim. Acta B 52, 25-39 (1997).
[CrossRef]

Spectrochim. Acta Part B (3)

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, "Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements," Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Z. Arp, D. Cremers, R. D. Harris, D. Oschwald, G. R. Parker, Jr., and D. Wayne, "Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission," Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

J.-S. Huang, C.-B. Ke, and K.-C. Lin, "Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets," Spectrochim. Acta Part B 59(3), 321-326 (2004).
[CrossRef]

Trend. Analyt. Chem. (1)

D. Rusak, B. Castle, B. Smith, and J. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trend. Analyt. Chem. 17, 453-461 (1998).
[CrossRef]

Other (4)

M. Varney, ed., Chemical Sensors in Oceanography (Gordon and Breach, 2000).

W. Seyfried, Jr., K. Johnson, and M. C. Tivey, In-situ sensors: their development and application for the study of chemical, physical and biological systems at mid-ocean ridges, NSF/Ridge Sponsored Workshop Report (2000).

"The next generation of in situ biological and chemical sensors in the ocean: a workshop report," (2004). URL http://www.whoi.edu/institutes/OLI/activities/symposialowbarsensors.htm.

J. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, and J. Wright, Seawater: Its Composition, Properties and Behaviour (The Open University, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the laboratory LIBS apparatus. Note that in the drawing, the laser pulses are simply represented by arrows as their optical paths are described in Fig. 2.

Fig. 2
Fig. 2

Optical arrangements used in experiments showing the high-pressure cell with respect to incoming laser pulses (signified by a dashed line). FO = optical fiber (a) L 1 , L 2 , and L 3 = f / 4 lenses; M 1 = dielectric coated mirror. (b) L 1 = f / 4 . To study the effect of NaCl concentration on spectra: L 2 = f / 3 lens, L 3 = f / 2 lens. To study the detection of Ca at varying concentrations: L 2 = f / 4 lens, L 3 = f / 3 lens. (c) L 1 = f / 4 , M 1 and M 2 = parabolic off-axis mirrors.

Fig. 3
Fig. 3

Effect of laser pulse energy on the LIBS signal intensity of 100 ppm Na(I) ( 588.995 nm ) . (a) Data taken at 7 × 10 5 Pa ( ) and 2.76 × 10 7 Pa (▵). (b) Na(I) spectra taken at 2.76 × 10 7 Pa . Spectra offset for clarity.

Fig. 4
Fig. 4

Effect of laser pulse energy on the LIBS emission intensity of the unresolvable Mn(I) triplet ( 403 nm ) (5000 ppm Mn in 2540 ppm NaCl). (a) Data taken at 7 × 10 5 Pa ( ) and 2.76 × 10 7 Pa (▵). (b) Mn(I) spectra taken at 2.76 × 10 7 Pa . Spectra offset for clarity.

Fig. 5
Fig. 5

Effect of pressure on LIBS emission intensity. □ = 100 ppm Na ( 588.995 nm ) with E = 22 mJ ; = 5000 ppm Mn ( 403 nm unresolvable triplet) with 2540 ppm NaCl, E = 14 mJ ; ▵  = 500 ppm Ca ( 422.673 nm ) with 2540 ppm NaCl, E = 20 mJ .

Fig. 6
Fig. 6

Spectra of 1000 ppm Ca with 2540 ppm NaCl at 2.76 × 10 7 Pa under four dual-pulse conditions.

Fig. 7
Fig. 7

(a) Effect of dual laser-pulse energies on emission intensity at 2.76 × 10 7 Pa for 1000 ppm Ca in 2540 ppm NaCl at various interpulse delays. Each data point is the average of five spectra. (b) Spectra of Ca showing the enhancement in signal for Δ T = 30 ns over Δ T = 30 μs . For (a) and (b): E 1 = 13 mJ , E 2 = 6 mJ .

Fig. 8
Fig. 8

Spectra of 5000 ppm Mn with 2540 ppm NaCl at 2.76 × 10 7 Pa under four dual-pulse conditions. The highest emission intensity is observed for a low–high pulse combination.

Fig. 9
Fig. 9

Effect of gate delay on the LIBS signal for 1000 ppm Li ( 670 nm unresolvable doublet). = 7 × 10 5 Pa, ▵  = 2.57 × 10 7 Pa . (a) Data taken with a single low-energy pulse ( 27 mJ ) and (b) with a single high-energy pulse ( 68 mJ ) .

Fig. 10
Fig. 10

Effect of the addition of NaCl in solution on spectra of 1000 ppm Ca at 2.57 × 10 7 Pa .

Fig. 11
Fig. 11

Detection of Ca ( 422.673 nm ) in a simulated vent fluid at varying pressures and concentrations. = 7 × 10 5 Pa , ▵  = 7 × 10 6 Pa , □ = 2.76 × 10 7 Pa .

Tables (2)

Tables Icon

Table 1 Conditions Used to Study the Effect of Dual-Pulse Energies on LIBS Emission

Tables Icon

Table 2 Dual-Pulse Emission Intensity (arb. units)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d σ 0 = 4 f λ M 2 π D ,
I f = π E L D 2 4 τ L f 2 λ 2 M 4 ,

Metrics