Abstract

The extended Rouard method is applied to the computation of a multi-absorbing-layer system for the optimization of surface plasmon resonance (SPR) sensors. Specifically, the effect of the properties of a metallic layer on the shape of the reflectivity and sensitivity curve is demonstrated in the case of a Kretschmann configuration. This theoretical investigation allows us to establish the best optical properties of the metal to obtain a localized SPR, given the illuminating beam properties. Toward the development of a sensitive biosensor based on SPR, we quantify the changes in reflectivity of such an optical biosensor induced by the deposition of a nanometric biochemical film as a function of the metal film characteristics and the illumination operating conditions. The sensitivity of the system emphasizes the potential of such biophotonic technology using metallic multilayer configurations, especially with envisioned metamaterials.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
    [CrossRef]
  2. B. Rothenhausler and W. Knoll, "Surface plasmon microscopy," Nature 332, 615-617 (1988).
  3. J. M. McDonnell, "Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition," Curr. Opin. Chem. Biol. 5, 572-577 (2001).
    [CrossRef] [PubMed]
  4. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," J. Opt. Soc. Am. 31, 213-222 (1941).
    [CrossRef]
  5. A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. (Leipzig) 216, 398-410 (1968).
    [CrossRef]
  6. E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).
  7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4-18, 125-126.
  8. P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, "Generalization of the Rouard method to an absorbing thin film stack and application to surface plasmon resonance," Appl. Opt. 45, 8419-8423 (2006).
    [CrossRef] [PubMed]
  9. M. P. Rouard, "Etudes des propriétés optiques des lames métalliques très minces," Ann. Phys. (Paris) Ser. II 7, 291-384 (1937).
  10. J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
    [CrossRef]
  11. Available at http://www.sopra-sa.com/index2.php?goto=d1&rub=4.
  12. P. Schiebener, J. Straub, J. M. H. Levelt-Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelegth, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
    [CrossRef]
  13. B. H. Ong, X. Yuan, S. C. Tjuin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum field enhancement of a bimetallic surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006).
    [CrossRef]
  14. S. Y. Wu and H. P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer," 2002 IEEE Hong Kong Electron Devices Meeting (IEEE, 2002), pp. 63-68.
  15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).
    [PubMed]
  16. L. Moiseev, M. Selim Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
    [CrossRef] [PubMed]
  17. A. K. Sharma and B. D. Gupta, "On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
    [CrossRef]
  18. J. Homola, I. Koudela, and S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
    [CrossRef]
  19. B. Rothenhäusler and W. Knoll, "Surface-plasmon spectroscopy," Nature 332, 615-617 (1988).
    [CrossRef]
  20. X. Ku, Z. Tang, Z. Fan, and J. Shao, "Effect of chromium intermediate layer on properties of silver coatings," Opt. Eng. 43, 971-974 (2004).
    [CrossRef]
  21. D.-K. Qing and G. Chen, "Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability," App. Phys. Lett. 84, 669-671 (2004).
    [CrossRef]
  22. N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
    [CrossRef]
  23. E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
    [CrossRef] [PubMed]

2006 (3)

B. H. Ong, X. Yuan, S. C. Tjuin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum field enhancement of a bimetallic surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006).
[CrossRef]

L. Moiseev, M. Selim Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, "Generalization of the Rouard method to an absorbing thin film stack and application to surface plasmon resonance," Appl. Opt. 45, 8419-8423 (2006).
[CrossRef] [PubMed]

2005 (1)

A. K. Sharma and B. D. Gupta, "On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
[CrossRef]

2004 (3)

X. Ku, Z. Tang, Z. Fan, and J. Shao, "Effect of chromium intermediate layer on properties of silver coatings," Opt. Eng. 43, 971-974 (2004).
[CrossRef]

D.-K. Qing and G. Chen, "Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability," App. Phys. Lett. 84, 669-671 (2004).
[CrossRef]

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

2003 (1)

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

2001 (1)

J. M. McDonnell, "Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition," Curr. Opin. Chem. Biol. 5, 572-577 (2001).
[CrossRef] [PubMed]

1999 (2)

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

1990 (1)

P. Schiebener, J. Straub, J. M. H. Levelt-Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelegth, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

1988 (2)

B. Rothenhäusler and W. Knoll, "Surface-plasmon spectroscopy," Nature 332, 615-617 (1988).
[CrossRef]

B. Rothenhausler and W. Knoll, "Surface plasmon microscopy," Nature 332, 615-617 (1988).

1983 (1)

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

1968 (2)

A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. (Leipzig) 216, 398-410 (1968).
[CrossRef]

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).

1941 (1)

1937 (1)

M. P. Rouard, "Etudes des propriétés optiques des lames métalliques très minces," Ann. Phys. (Paris) Ser. II 7, 291-384 (1937).

Bassil, N.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).
[PubMed]

Brengel-Pesce, K.

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

Cantor, C. R.

L. Moiseev, M. Selim Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

Canva, M.

P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, "Generalization of the Rouard method to an absorbing thin film stack and application to surface plasmon resonance," Appl. Opt. 45, 8419-8423 (2006).
[CrossRef] [PubMed]

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

Capela, D.

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

Chen, G.

D.-K. Qing and G. Chen, "Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability," App. Phys. Lett. 84, 669-671 (2004).
[CrossRef]

Ctyroky, J.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Fan, Z.

X. Ku, Z. Tang, Z. Fan, and J. Shao, "Effect of chromium intermediate layer on properties of silver coatings," Opt. Eng. 43, 971-974 (2004).
[CrossRef]

Fano, U.

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. Levelt-Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelegth, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Goldberg, B. B.

L. Moiseev, M. Selim Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

Goossens, M.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

Gupta, B. D.

A. K. Sharma and B. D. Gupta, "On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
[CrossRef]

Harris, R. D.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Ho, H. P.

S. Y. Wu and H. P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer," 2002 IEEE Hong Kong Electron Devices Meeting (IEEE, 2002), pp. 63-68.

Hoekstra, H. J. W. M.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Homola, J.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Knoll, W.

B. Rothenhäusler and W. Knoll, "Surface-plasmon spectroscopy," Nature 332, 615-617 (1988).
[CrossRef]

B. Rothenhausler and W. Knoll, "Surface plasmon microscopy," Nature 332, 615-617 (1988).

Koudela, I.

J. Homola, I. Koudela, and S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).

Ku, X.

X. Ku, Z. Tang, Z. Fan, and J. Shao, "Effect of chromium intermediate layer on properties of silver coatings," Opt. Eng. 43, 971-974 (2004).
[CrossRef]

Lambeck, P. V.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Lecaruyer, P.

Levelt-Sengers, J. M. H.

P. Schiebener, J. Straub, J. M. H. Levelt-Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelegth, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Levy, Y.

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Livache, T.

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Lyndin, N. M.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Maillart, E.

P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, "Generalization of the Rouard method to an absorbing thin film stack and application to surface plasmon resonance," Appl. Opt. 45, 8419-8423 (2006).
[CrossRef] [PubMed]

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

McDonnell, J. M.

J. M. McDonnell, "Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition," Curr. Opin. Chem. Biol. 5, 572-577 (2001).
[CrossRef] [PubMed]

Millot, M. C.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

Moiseev, L.

L. Moiseev, M. Selim Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

Musa, S.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Narwa, R.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

Ng, H. M.

B. H. Ong, X. Yuan, S. C. Tjuin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum field enhancement of a bimetallic surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Ong, B. H.

B. H. Ong, X. Yuan, S. C. Tjuin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum field enhancement of a bimetallic surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006).
[CrossRef]

Otto, A.

A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. (Leipzig) 216, 398-410 (1968).
[CrossRef]

Pissard, S.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

Qing, D.-K.

D.-K. Qing and G. Chen, "Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability," App. Phys. Lett. 84, 669-671 (2004).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4-18, 125-126.

Roget, A.

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

Rolland, J.

Rothenhausler, B.

B. Rothenhausler and W. Knoll, "Surface plasmon microscopy," Nature 332, 615-617 (1988).

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, "Surface-plasmon spectroscopy," Nature 332, 615-617 (1988).
[CrossRef]

Rouard, M. P.

M. P. Rouard, "Etudes des propriétés optiques des lames métalliques très minces," Ann. Phys. (Paris) Ser. II 7, 291-384 (1937).

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. Levelt-Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelegth, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Shao, J.

X. Ku, Z. Tang, Z. Fan, and J. Shao, "Effect of chromium intermediate layer on properties of silver coatings," Opt. Eng. 43, 971-974 (2004).
[CrossRef]

Sharma, A. K.

A. K. Sharma and B. D. Gupta, "On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
[CrossRef]

Soussi, T.

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

Straub, J.

P. Schiebener, J. Straub, J. M. H. Levelt-Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelegth, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Swan, A. K.

L. Moiseev, M. Selim Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

Tang, Z.

X. Ku, Z. Tang, Z. Fan, and J. Shao, "Effect of chromium intermediate layer on properties of silver coatings," Opt. Eng. 43, 971-974 (2004).
[CrossRef]

Tjuin, S. C.

B. H. Ong, X. Yuan, S. C. Tjuin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum field enhancement of a bimetallic surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006).
[CrossRef]

Ünlü, M. Selim

L. Moiseev, M. Selim Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

Usievich, B.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Wilkinson, J. S.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).
[PubMed]

Wu, S. Y.

S. Y. Wu and H. P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer," 2002 IEEE Hong Kong Electron Devices Meeting (IEEE, 2002), pp. 63-68.

Yee, S.

J. Homola, I. Koudela, and S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Yuan, X.

B. H. Ong, X. Yuan, S. C. Tjuin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum field enhancement of a bimetallic surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006).
[CrossRef]

Zhang, J.

B. H. Ong, X. Yuan, S. C. Tjuin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum field enhancement of a bimetallic surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006).
[CrossRef]

Ann. Phys. (1)

M. P. Rouard, "Etudes des propriétés optiques des lames métalliques très minces," Ann. Phys. (Paris) Ser. II 7, 291-384 (1937).

App. Phys. Lett. (1)

D.-K. Qing and G. Chen, "Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability," App. Phys. Lett. 84, 669-671 (2004).
[CrossRef]

Appl. Opt. (1)

Curr. Opin. Chem. Biol. (1)

J. M. McDonnell, "Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition," Curr. Opin. Chem. Biol. 5, 572-577 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. Levelt-Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelegth, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Nature (2)

B. Rothenhäusler and W. Knoll, "Surface-plasmon spectroscopy," Nature 332, 615-617 (1988).
[CrossRef]

B. Rothenhausler and W. Knoll, "Surface plasmon microscopy," Nature 332, 615-617 (1988).

Oncogene (1)

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, "Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction," Oncogene 23, 5543-5550 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. K. Sharma and B. D. Gupta, "On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
[CrossRef]

Opt. Eng. (1)

X. Ku, Z. Tang, Z. Fan, and J. Shao, "Effect of chromium intermediate layer on properties of silver coatings," Opt. Eng. 43, 971-974 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

L. Moiseev, M. Selim Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Sens. Actuators B (4)

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

B. H. Ong, X. Yuan, S. C. Tjuin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum field enhancement of a bimetallic surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006).
[CrossRef]

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, "One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations," Sens. Actuators B 94, 313-323 (2003).
[CrossRef]

Z. Naturforsch. (1)

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).

Z. Phys. (1)

A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. (Leipzig) 216, 398-410 (1968).
[CrossRef]

Other (4)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4-18, 125-126.

Available at http://www.sopra-sa.com/index2.php?goto=d1&rub=4.

S. Y. Wu and H. P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer," 2002 IEEE Hong Kong Electron Devices Meeting (IEEE, 2002), pp. 63-68.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Three layer stack representing the Kretschmann configuration. The metallic layer is located between the two dielectric media (i.e., SF11 and water) of refractive index n 1 and n 3 with n 1 > n 3 . The phase difference arising with the reflection at an interface medium 1∕medium 2 is denoted Φ medium   1 medium   2 .

Fig. 2
Fig. 2

Boundaries of the index of refraction ( n = n + i n ) of the layer inserted in order to observe the SPR in the case of a Kretschmann configuration glass–inserted layer–water. The longer dashed curve represents the asymptote of the next curve ( n = n ) for a refractive index with a very high real part; it represents the boundary for a material to be a metal. The solid curve (just above) represents the limit of the index of refraction of the inserted layer to yield total internal reflection. The short dashed curves (almost half circular) represent the limit of the refractive index of the inserted layer needed to excite the plasmon wave. The zone in which SPR occurs is delimited by the long solid curve and the appropriate short dashed curve.

Fig. 3
Fig. 3

Trajectories of six metals in the complex plan of index of refraction from 400 to 800   nm . The dashed line represents the boundary for which n < n .

Fig. 4
Fig. 4

a, Reflectivity curve of the minimum reflectivity as a function of the silver thickness in an SF11–silver–water configuration at 750   nm ; with the optimized associated angle of incidence, a minimum appears for a thickness of 47   nm , representing the best coupling coefficient. b, Surface plot of the reflectivity as a function of the angle of incidence and the metallic thickness. The trajectory shows clearly that the resonance angle changes as the metallic thickness changes.

Fig. 5
Fig. 5

a, Maximum reflectivity variation curve between an SF11–silver–water configuration and an SF11–silver–DNA layer–water configuration as a function of the silver thickness at 750   nm ; a maximum appears for a thickness of 54   nm , representing the best transducing coefficient. The parameters of the homogeneous DNA layer are n = 1.46 and thickness 1   nm . b, Surface plot of the reflectivity variation as a function of the angle of incidence and the metallic thickness, illustrating that the optimum thickness for maximized coupling and maximized sensitivity are slightly different.

Fig. 6
Fig. 6

a, Angular reflectivity curves at 600 nm centered around 0° for four materials with optimized coupling thicknesses and offsets in an SF11–material–water configuration, demonstrating the influence of n and n on the narrowness of the absorption dip. b, Angular reflectivity variation curves at 600   nm centered around 0 after the insertion of a 1   nm layer of index of refraction ( n = 1.46 ) . c, Angular reflectivity curves at 700 nm centered around 0° for three metals with different thicknesses (silver, e = 54 nm; gold, e = 51 nm; copper, e = 45 nm) and angular offsets in an SF11–metal–water configuration. d, Angular reflectivity variation curves at 700   nm centered around 0 after the insertion of a 1 nm layer of index of refraction ( n = 1.46 ) .

Fig. 7
Fig. 7

a, Angular reflectivity curves of an SF11–silver layer–water configuration for two sets of parameters ( λ = 450   nm , e = 40   nm ; λ = 750   nm , e = 47   nm ) with the insertion of 1 nm of dielectric ( n = 1.46 ) and without this dielectric. b, Optimized angular reflectivity variation curves after the insertion of 1 nm of dielectric ( n = 1.46 ) in an SF11–silver layer–water configuration ( λ = 450   nm , e = 45   nm ; λ = 750   nm , e = 54   nm ).

Fig. 8
Fig. 8

Maximum reflectivity variation for the insertion of 1   nm of dielectric ( n = 1.46 ) as a function of the thicknesses of a combination of metals (a, silver–gold; b, chromium–gold; c, chromium–silver–gold) at 600   nm . The white cross represents the maximum reflectivity variation for an SF11–chromium–silver–gold–water configuration with 2 nm of chromium and gold.

Fig. 9
Fig. 9

a, Surface plot of the maximum reflectivity variation obtained for an SF11–layer of index n = n + i n –water configuration after the deposition of 1   nm of dielectric of index n = 1.46 . b, Surface plot of the associated optimum thickness of the inserted metallic layer.

Tables (1)

Tables Icon

Table 1 Index of Refraction of Six Metals for Two Wavelengths

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n prism sin θ prism / dielectric > n dielectric .
n prism > n effective   index ,
k SPR = 2 π λ n m 2 n d 2 n m 2 + n d 2 ,
n effective   index > n dielectric .
4 π n metal e metal cos θ λ + 2 Φ 1 metal + 2 Φ metal 3 = 2 m π ,
e metal = | λ ( Φ 1 metal + Φ 2 metal ) 2 π n metal cos θ | .

Metrics