Abstract

The extended Rouard method is applied to the computation of a multi-absorbing-layer system for the optimization of surface plasmon resonance (SPR) sensors. Specifically, the effect of the properties of a metallic layer on the shape of the reflectivity and sensitivity curve is demonstrated in the case of a Kretschmann configuration. This theoretical investigation allows us to establish the best optical properties of the metal to obtain a localized SPR, given the illuminating beam properties. Toward the development of a sensitive biosensor based on SPR, we quantify the changes in reflectivity of such an optical biosensor induced by the deposition of a nanometric biochemical film as a function of the metal film characteristics and the illumination operating conditions. The sensitivity of the system emphasizes the potential of such biophotonic technology using metallic multilayer configurations, especially with envisioned metamaterials.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Angular-interrogation attenuated total reflection metrology system for plasmonic sensors

Jenq-Nan Yih, Fan-Ching Chien, Chun-Yun Lin, Hon-Fai Yau, and Shean-Jen Chen
Appl. Opt. 44(29) 6155-6162 (2005)

Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength

M. Tahmasebpour, M. Bahrami, and A. Asgari
Appl. Opt. 53(7) 1449-1458 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription