Abstract

A 2D photonic crystal surface with a different period in each lateral direction is demonstrated to detect biomolecules using two distinct sensing modalities. The sensing mechanisms both rely on the generation of a resonant reflection peak at one of two specific wavelengths, depending on the polarization of light that is incident on the photonic crystal. One polarization results in a resonant reflection peak in the visible spectrum to coincide with the excitation wavelength of a fluorophore, while the orthogonal polarization results in a resonant reflection peak at an infrared wavelength which is used for label-free detection of adsorbed biomolecules. The photonic crystal resonance for fluorescence excitation causes enhanced near fields at the structure surface, resulting in increased signal from fluorophores within 100nm of the device surface. Label-free detection is performed by illuminating the photonic crystal with white light and monitoring shifts in the peak reflected wavelength of the infrared resonance with a high-resolution imaging detection instrument. Rigorous coupled-wave analysis was used to determine optimal dimensions for the photonic crystal structure, and devices were fabricated using a polymer-based nanoreplica molding approach. Fluorescence-based and label-free detection were demonstrated using arrays of spots of dye-conjugated streptavidin. Quantification of the fluorescent signal showed that the fluorescence output from protein spots on the photonic crystal was increased by up to a factor of 35, and deposited spots were also imaged in the label-free detection mode.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray," Science 270, 467-470 (1995).
    [CrossRef] [PubMed]
  2. A. Q. Emili and G. Cagney, "Large-scale functional analysis using peptide or protein arrays," Nat. Biotechnol. 18, 393-397 (2000).
    [CrossRef] [PubMed]
  3. W. Budach, D. Neuschafer, C. Wanke, and S.-D. Chibout, "Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 75, 2571-2577 (2003).
    [CrossRef] [PubMed]
  4. D. Neuschafer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
    [CrossRef] [PubMed]
  5. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  6. B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
    [CrossRef]
  7. S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
    [CrossRef]
  8. W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
    [CrossRef]
  9. P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 99, 6-13 (2004).
    [CrossRef]
  10. B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
    [CrossRef]
  11. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonances in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 7, 1470-1474 (1990).
    [CrossRef]
  12. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  13. Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Exp. 12, 5661-5674 (2004).
    [CrossRef]
  14. C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, "Electric field enhancement in guided-mode resonance filters," Opt. Lett. 31, 1223-1225 (2006).
    [CrossRef] [PubMed]
  15. R. Magnusson, D. Shin, and Z. S. Liu, "Guided-mode resonance Brewster filter," Opt. Lett. 23, 612-614 (1998).
    [CrossRef]
  16. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, "High-efficiency guided-mode resonance filter," Opt. Lett. 23, 1556-1558 (1998).
    [CrossRef]
  17. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
    [CrossRef]
  18. N. Ganesh and B. T. Cunningham, "Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding," Appl. Phys. Lett. 88, 071110-071113 (2006).
    [CrossRef]
  19. D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
    [CrossRef]
  20. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  21. H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
    [CrossRef]
  22. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, "Spontaneous emission extraction and Purcell enhancement from thin-film 2D photonic crystals," J. Lightwave Technol. 17, 2096-2112 (1999).
    [CrossRef]
  23. J. R. Shearstone, N. E. Allaire, M. E. Getman, and S. Perrin, "Nondestructive quality control for microarray production," BioTechniques 32, 1051-1057 (2002).
    [PubMed]
  24. X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
    [CrossRef]
  25. G. E. Croston, "Functional cell-based uHTS in chemical genomic drug discovery," Trends Biotechnol. 20, 110-115 (2002).
    [CrossRef] [PubMed]
  26. J. Denyer, J. Worley, B. Cox, G. Allenby, and M. Banks, "HTS approaches to voltage-gated ion channel drug discovery," Drug Discovery Today 3, 323-332 (1998).
    [CrossRef]
  27. J. E. Gonzalez, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, "Cell-based assays and instrumentation for screening ion-channel targets," Drug Discovery Today 4, 431-439 (1999).
    [CrossRef] [PubMed]
  28. R. Netzer, A. Ebneth, U. Bischoff, and O. Pongs, "Screening lead compounds for QT interval prolongation," Drug Discovery Today 6, 78-84 (2001).
    [CrossRef] [PubMed]
  29. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
    [CrossRef]

2006 (3)

C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, "Electric field enhancement in guided-mode resonance filters," Opt. Lett. 31, 1223-1225 (2006).
[CrossRef] [PubMed]

N. Ganesh and B. T. Cunningham, "Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding," Appl. Phys. Lett. 88, 071110-071113 (2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

2005 (1)

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

2004 (3)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 99, 6-13 (2004).
[CrossRef]

Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Exp. 12, 5661-5674 (2004).
[CrossRef]

2003 (3)

W. Budach, D. Neuschafer, C. Wanke, and S.-D. Chibout, "Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 75, 2571-2577 (2003).
[CrossRef] [PubMed]

D. Neuschafer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

2002 (4)

G. E. Croston, "Functional cell-based uHTS in chemical genomic drug discovery," Trends Biotechnol. 20, 110-115 (2002).
[CrossRef] [PubMed]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

J. R. Shearstone, N. E. Allaire, M. E. Getman, and S. Perrin, "Nondestructive quality control for microarray production," BioTechniques 32, 1051-1057 (2002).
[PubMed]

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

2001 (1)

R. Netzer, A. Ebneth, U. Bischoff, and O. Pongs, "Screening lead compounds for QT interval prolongation," Drug Discovery Today 6, 78-84 (2001).
[CrossRef] [PubMed]

2000 (1)

A. Q. Emili and G. Cagney, "Large-scale functional analysis using peptide or protein arrays," Nat. Biotechnol. 18, 393-397 (2000).
[CrossRef] [PubMed]

1999 (3)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. E. Gonzalez, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, "Cell-based assays and instrumentation for screening ion-channel targets," Drug Discovery Today 4, 431-439 (1999).
[CrossRef] [PubMed]

M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, "Spontaneous emission extraction and Purcell enhancement from thin-film 2D photonic crystals," J. Lightwave Technol. 17, 2096-2112 (1999).
[CrossRef]

1998 (3)

1995 (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray," Science 270, 467-470 (1995).
[CrossRef] [PubMed]

1992 (2)

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

1991 (1)

S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
[CrossRef]

1990 (1)

1983 (2)

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Allaire, N. E.

J. R. Shearstone, N. E. Allaire, M. E. Getman, and S. Perrin, "Nondestructive quality control for microarray production," BioTechniques 32, 1051-1057 (2002).
[PubMed]

Allenby, G.

J. Denyer, J. Worley, B. Cox, G. Allenby, and M. Banks, "HTS approaches to voltage-gated ion channel drug discovery," Drug Discovery Today 3, 323-332 (1998).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Bagby, J. S.

Baird, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

Banks, M.

J. Denyer, J. Worley, B. Cox, G. Allenby, and M. Banks, "HTS approaches to voltage-gated ion channel drug discovery," Drug Discovery Today 3, 323-332 (1998).
[CrossRef]

Barner, R.

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

Bensity, H.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Bhat, R.

Bischoff, U.

R. Netzer, A. Ebneth, U. Bischoff, and O. Pongs, "Screening lead compounds for QT interval prolongation," Drug Discovery Today 6, 78-84 (2001).
[CrossRef] [PubMed]

Boroditsky, M.

Brown, P. O.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray," Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Budach, W.

W. Budach, D. Neuschafer, C. Wanke, and S.-D. Chibout, "Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 75, 2571-2577 (2003).
[CrossRef] [PubMed]

D. Neuschafer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

Cagney, G.

A. Q. Emili and G. Cagney, "Large-scale functional analysis using peptide or protein arrays," Nat. Biotechnol. 18, 393-397 (2000).
[CrossRef] [PubMed]

Cerovic, G.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Chardon, A.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Chibout, S.-D.

W. Budach, D. Neuschafer, C. Wanke, and S.-D. Chibout, "Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 75, 2571-2577 (2003).
[CrossRef] [PubMed]

D. Neuschafer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

Choumane, H.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Coccioli, R.

Cox, B.

J. Denyer, J. Worley, B. Cox, G. Allenby, and M. Banks, "HTS approaches to voltage-gated ion channel drug discovery," Drug Discovery Today 3, 323-332 (1998).
[CrossRef]

Croston, G. E.

G. E. Croston, "Functional cell-based uHTS in chemical genomic drug discovery," Trends Biotechnol. 20, 110-115 (2002).
[CrossRef] [PubMed]

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Cunningham, B. T.

N. Ganesh and B. T. Cunningham, "Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding," Appl. Phys. Lett. 88, 071110-071113 (2006).
[CrossRef]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 99, 6-13 (2004).
[CrossRef]

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

Davis, R. W.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray," Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Deng, D.

Denyer, J.

J. Denyer, J. Worley, B. Cox, G. Allenby, and M. Banks, "HTS approaches to voltage-gated ion channel drug discovery," Drug Discovery Today 3, 323-332 (1998).
[CrossRef]

Ding, Y.

Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Exp. 12, 5661-5674 (2004).
[CrossRef]

Ebneth, A.

R. Netzer, A. Ebneth, U. Bischoff, and O. Pongs, "Screening lead compounds for QT interval prolongation," Drug Discovery Today 6, 78-84 (2001).
[CrossRef] [PubMed]

Emili, A. Q.

A. Q. Emili and G. Cagney, "Large-scale functional analysis using peptide or protein arrays," Nat. Biotechnol. 18, 393-397 (2000).
[CrossRef] [PubMed]

Fan, Z.

Fattinger, C.

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

Feng, X.

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

Fine, E.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

Ganesh, N.

N. Ganesh and B. T. Cunningham, "Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding," Appl. Phys. Lett. 88, 071110-071113 (2006).
[CrossRef]

Garoff, S.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Genick, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

Gersten, J. I.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Gerstenmaier, J.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 99, 6-13 (2004).
[CrossRef]

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

Getman, M. E.

J. R. Shearstone, N. E. Allaire, M. E. Getman, and S. Perrin, "Nondestructive quality control for microarray production," BioTechniques 32, 1051-1057 (2002).
[PubMed]

Ghosh, S.

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

Gonzalez, J. E.

J. E. Gonzalez, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, "Cell-based assays and instrumentation for screening ion-channel targets," Drug Discovery Today 4, 431-439 (1999).
[CrossRef] [PubMed]

Goutel, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Ha, N.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Harootunian, A.

J. E. Gonzalez, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, "Cell-based assays and instrumentation for screening ion-channel targets," Drug Discovery Today 4, 431-439 (1999).
[CrossRef] [PubMed]

Hessner, M. J.

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Huber, W.

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

Hubscher, J.

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Jiang, N.

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

Koller, H.

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

Krauss, T. F.

Laing, L.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

Leychkis, Y.

J. E. Gonzalez, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, "Cell-based assays and instrumentation for screening ion-channel targets," Drug Discovery Today 4, 431-439 (1999).
[CrossRef] [PubMed]

Li, P.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Li, P. Y.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 99, 6-13 (2004).
[CrossRef]

Liedberg, B.

S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Lin, B.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 99, 6-13 (2004).
[CrossRef]

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Liu, S.

Liu, Z. S.

Lofas, S.

S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
[CrossRef]

Lukosz, W.

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

Lundstrom, I.

S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Magnusson, R.

Malmqvist, M.

S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
[CrossRef]

Moharam, M. G.

Muller, F.

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

Negulescu, P. A.

J. E. Gonzalez, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, "Cell-based assays and instrumentation for screening ion-channel targets," Drug Discovery Today 4, 431-439 (1999).
[CrossRef] [PubMed]

Nelep, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Netzer, R.

R. Netzer, A. Ebneth, U. Bischoff, and O. Pongs, "Screening lead compounds for QT interval prolongation," Drug Discovery Today 6, 78-84 (2001).
[CrossRef] [PubMed]

Neuschafer, D.

D. Neuschafer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

W. Budach, D. Neuschafer, C. Wanke, and S.-D. Chibout, "Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 75, 2571-2577 (2003).
[CrossRef] [PubMed]

Nitzan, A.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Oades, K.

J. E. Gonzalez, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, "Cell-based assays and instrumentation for screening ion-channel targets," Drug Discovery Today 4, 431-439 (1999).
[CrossRef] [PubMed]

Pepper, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Perrin, S.

J. R. Shearstone, N. E. Allaire, M. E. Getman, and S. Perrin, "Nondestructive quality control for microarray production," BioTechniques 32, 1051-1057 (2002).
[PubMed]

Pongs, O.

R. Netzer, A. Ebneth, U. Bischoff, and O. Pongs, "Screening lead compounds for QT interval prolongation," Drug Discovery Today 6, 78-84 (2001).
[CrossRef] [PubMed]

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Reymond, G. O.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Ronnberg, I.

S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
[CrossRef]

Schena, M.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray," Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Schlatter, D.

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

Schulz, S.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

Shalon, D.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray," Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Shao, J.

Shearstone, J. R.

J. R. Shearstone, N. E. Allaire, M. E. Getman, and S. Perrin, "Nondestructive quality control for microarray production," BioTechniques 32, 1051-1057 (2002).
[PubMed]

Shen, J.

Shin, D.

Stenberg, E.

S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
[CrossRef]

Tibuleac, S.

Tonellato, P. J.

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

Vallet, F.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Vrijen, R.

Wang, F.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

Wang, S. S.

Wang, X.

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

Wanke, C.

W. Budach, D. Neuschafer, C. Wanke, and S.-D. Chibout, "Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 75, 2571-2577 (2003).
[CrossRef] [PubMed]

D. Neuschafer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

Wei, C.

Weisbuch, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Weitz, D. A.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Worley, J.

J. Denyer, J. Worley, B. Cox, G. Allenby, and M. Banks, "HTS approaches to voltage-gated ion channel drug discovery," Drug Discovery Today 3, 323-332 (1998).
[CrossRef]

Xie, Y.

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

Yablonovitch, E.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Young, P. P.

Anal. Chem. (1)

W. Budach, D. Neuschafer, C. Wanke, and S.-D. Chibout, "Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 75, 2571-2577 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

N. Ganesh and B. T. Cunningham, "Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding," Appl. Phys. Lett. 88, 071110-071113 (2006).
[CrossRef]

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Bensity, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Biosens. Bioelectron. (1)

D. Neuschafer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

BioTechniques (1)

J. R. Shearstone, N. E. Allaire, M. E. Getman, and S. Perrin, "Nondestructive quality control for microarray production," BioTechniques 32, 1051-1057 (2002).
[PubMed]

Drug Discovery Today (3)

J. Denyer, J. Worley, B. Cox, G. Allenby, and M. Banks, "HTS approaches to voltage-gated ion channel drug discovery," Drug Discovery Today 3, 323-332 (1998).
[CrossRef]

J. E. Gonzalez, K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu, "Cell-based assays and instrumentation for screening ion-channel targets," Drug Discovery Today 4, 431-439 (1999).
[CrossRef] [PubMed]

R. Netzer, A. Ebneth, U. Bischoff, and O. Pongs, "Screening lead compounds for QT interval prolongation," Drug Discovery Today 6, 78-84 (2001).
[CrossRef] [PubMed]

IEEE Trans. Nanobiosc. (1)

X. Wang, N. Jiang, X. Feng, Y. Xie, P. J. Tonellato, S. Ghosh, and M. J. Hessner, "A novel approach for high-quality microarray processing using third-dye array visualization technology," IEEE Trans. Nanobiosc. 2, 193-201 (2003).
[CrossRef]

J. Biomol. Screening (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
[CrossRef]

J. Chem. Phys. (1)

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

A. Q. Emili and G. Cagney, "Large-scale functional analysis using peptide or protein arrays," Nat. Biotechnol. 18, 393-397 (2000).
[CrossRef] [PubMed]

Opt. Exp. (1)

Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Exp. 12, 5661-5674 (2004).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Science (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray," Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Sens. Actuators B (6)

S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B 5, 79-84 (1991).
[CrossRef]

W. Huber, R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D. Schlatter, and W. Lukosz, "Direct optical immunosensing (sensitivity and selectivity)," Sens. Actuators B 6, 122-126 (1992).
[CrossRef]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 99, 6-13 (2004).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Trends Biotechnol. (1)

G. E. Croston, "Functional cell-based uHTS in chemical genomic drug discovery," Trends Biotechnol. 20, 110-115 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the optimized photonic crystal biosensor structure. Directional axes are noted on the bottom left of each structure. (a) Side view of the structure in the xz plane. The period in the EF direction, or Λ E F , is 400 nm . The grating depth (d) is 70 nm , and the thickness of the TiO 2 layer (t) is 80 nm . The indices of refraction for the UV curable polymer and TiO 2 layers are 1.43 and 2.35, respectively. (b) Top-down view of the 2D structure. The electric field polarizations required to excite each mode of operation are noted on the coordinate axis. The periods in each direction are designated as Λ E F and Λ L F . The line widths associated with each period are noted by L W E F and L W L F .

Fig. 2
Fig. 2

Simulated reflection characteristics of device structure. (a) Reflection efficiency plotted as a function of wavelength for the polarization of light intended to excite the ER mode of operation with light at normal incidence. (b) Reflection efficiency plotted as a function of the variation of incidence angle from the surface normal. The light is polarized for ER excitation at a wavelength of 635 nm . (c) Reflection efficiency as a function of wavelength for the LF polarization of light.

Fig. 3
Fig. 3

Near-field profiles at a fixed y position (exactly in the center of the structure) for normally incident light of wavelength 635 nm polarized in the EF direction. The device structure is drawn into the figure and the layers of UV-curable polymer (UVCP), titanium dioxide ( TiO 2 ), and air are noted. The amplitudes noted on the scale bar represent the combined field amplitude in all directions relative to the incident field amplitude. (a) Electric field profile. (b) Magnetic field profile.

Fig. 4
Fig. 4

SEM images of the final device structure. (a) Sensor structure viewed from directly above. The period in the ER direction (vertical) is 398 nm , and the period in the LF direction (horizontal) is 553 nm . The ER direction duty cycle is 62%, and the LF direction duty cycle is 63%. (b) Sensor structure viewed from a 30° angle. The structure profiles are significantly rounded due to the sputtering process.

Fig. 5
Fig. 5

Measured spectra after illumination with polarized, collimated white light. (a) Spectrum when illuminated with light polarized in the ER direction (simulation x direction). The resonant peak is centered at 635 nm with a FWHM of approximately 13 nm . (b) Spectra when illuminated with light polarized in the LF direction (simulation y direction) with water or isopropyl alcohol (IPA) as the bulk solutions. The sensor surface is immersed in water and displays a peak of PWV 850 nm and FWHM of approximately 15 nm under this condition. IPA is then applied to the sensor surface, resulting in a shift of approximately 4 nm .

Fig. 6
Fig. 6

(Color online) Fluorescence intensity data from Cy5-streptavidin spots on and off the device. (a) Fluorescence intensity image of data obtained from the microarray scan. Device scanned at 635 nm at a resolution of 5 μm . The photonic crystal region is labeled in addition to the line used to generate the image profile that appears in (b). (b) Image profile of spots on and off device, with the photonic crystal region labeled.

Fig. 7
Fig. 7

Label-free detection data from Cy5-streptavidin spot on the device surface. (a) PWV shift image obtained from subtracting PWVs from a scan before spotting from those values from a scan after spotting. (b) Image profile of PWV shift values for one row of pixels through the center of the spot.

Metrics