Abstract

To increase the signal-to-noise ratio and to remove the spatially slow varying signals, a lock-in amplifier is often used in scanning probe microscopy. The signal reconstructed from the lock-in data contains the contributions of the evanescent and homogeneous waves that are mixed in the near-field zone (i.e., at a very short distance). The resolution is determined and a method is given to suppress the useless background information. Experimental images of nanoparticles are processed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994).
    [CrossRef] [PubMed]
  2. B. Knoll and K. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
    [CrossRef]
  3. W. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAl/As laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J. Appl. Phys. 5, 269-275 (1999).
    [CrossRef]
  4. D. Barchiesi, T. Grosges, and A. Vial, "Measurement of decay lengths of evanescent waves: the lock-in nonlinear filtering," New J. Phys. 8, 263 (2006).
    [CrossRef]
  5. P. G. Gucciardi, G. Bachelier, and M. Allegrini, "Far-field background suppression in tip-modulated apertureless near-field optical microscopy," J. Appl. Phys. 99, 124309 (2006).
    [CrossRef]
  6. R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
    [CrossRef] [PubMed]
  7. D. Barchiesi and T. Grosges, "Signal reconstruction from a scanning near-field optical microscopy approach curve," Opt. Express 13, 6519-6526 (2005).
    [CrossRef] [PubMed]
  8. N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
    [CrossRef]
  9. S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, "Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection," J. Appl. Phys. B 84, 233-238 (2006).
    [CrossRef]
  10. D. Barchiesi, "Scanning near-field optical data contrast measurement: a tomographylike near-field reconstruction," Appl. Opt. 45, 7597-7601 (2006).
    [CrossRef] [PubMed]
  11. T. Grosges and D. Barchiesi, "Tomography of the near-field optical signal," Opt. Lett. 31, 3435-3437 (2006).
    [CrossRef] [PubMed]
  12. F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution," Science 269, 1083-1085 (1995).
    [CrossRef] [PubMed]
  13. S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
    [CrossRef]
  14. P. M. Adam, J. L. Bijeon, G. Viardot, and P. Royer, "Analysis of the influence of the tip vibration in the formation of images in apertureless scanning near-field optical microscopy," Opt. Commun. 174, 91-98 (2000).
    [CrossRef]
  15. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1994).
  16. J. S. Lim, Two Dimensional Signal and Image Processing (Prentice-Hall, 1990).
  17. D. Barchiesi, "Time-frequency analysis: a tool to discriminate artifacts from near-field optical data," J. Microsc. 202, 332-338 (2000).
    [CrossRef]
  18. D. Barchiesi, O. Bergossi, M. Spajer and C. Pieralli, "Image resolution in reflection scanning near-field optical microscopy (R-SNOM) using shear-force (ShF) feedback:characterization using spline and fourier spectrum," Appl. Opt. 36, 2171-2177 (1997).
    [CrossRef] [PubMed]
  19. D. Barchiesi and T. Gharbi, "Local spectral information in the near-field with wavelet analysis and entropy," Appl. Opt. 38, 6587-6596 (1999).
    [CrossRef]
  20. T. Gharbi and D. Barchiesi, "Local signal processing to evaluate resolution in SNOM images using 1D wavelets," Opt. Commun. 177, 85-93 (1999).
    [CrossRef]
  21. T. Gharbi, D. Barchiesi, O. Bergossi, H. Wioland, and C. Richard, "Optical near-field data analysis through time-frequency distributions: application to the characterization and the separation of the image spectral content by reassignment," J. Opt. Soc. Am. A 17, 2513-2519 (2000).
    [CrossRef]
  22. J. Salvi, D. Barchiesi, and D. Courjon, "Use of a resonant optical cavity to increase the spectral density of near-field optical images," Opt. Commun. 197, 267-273 (2001).
    [CrossRef]
  23. L. Cohen, "Time-frequency distribution: a review," Proc. IEEE 77, 941-981 (1989).
    [CrossRef]
  24. T. A. C. M. Claasen and W. F. G. Mecklenbräuker, "The Wigner distribution:a Tool for time-frequency signal analysis," Phillips J. Res. 35, 217-250 (1980).

2007 (1)

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

2006 (5)

D. Barchiesi, T. Grosges, and A. Vial, "Measurement of decay lengths of evanescent waves: the lock-in nonlinear filtering," New J. Phys. 8, 263 (2006).
[CrossRef]

P. G. Gucciardi, G. Bachelier, and M. Allegrini, "Far-field background suppression in tip-modulated apertureless near-field optical microscopy," J. Appl. Phys. 99, 124309 (2006).
[CrossRef]

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, "Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection," J. Appl. Phys. B 84, 233-238 (2006).
[CrossRef]

D. Barchiesi, "Scanning near-field optical data contrast measurement: a tomographylike near-field reconstruction," Appl. Opt. 45, 7597-7601 (2006).
[CrossRef] [PubMed]

T. Grosges and D. Barchiesi, "Tomography of the near-field optical signal," Opt. Lett. 31, 3435-3437 (2006).
[CrossRef] [PubMed]

2005 (1)

2001 (2)

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

J. Salvi, D. Barchiesi, and D. Courjon, "Use of a resonant optical cavity to increase the spectral density of near-field optical images," Opt. Commun. 197, 267-273 (2001).
[CrossRef]

2000 (5)

T. Gharbi, D. Barchiesi, O. Bergossi, H. Wioland, and C. Richard, "Optical near-field data analysis through time-frequency distributions: application to the characterization and the separation of the image spectral content by reassignment," J. Opt. Soc. Am. A 17, 2513-2519 (2000).
[CrossRef]

P. M. Adam, J. L. Bijeon, G. Viardot, and P. Royer, "Analysis of the influence of the tip vibration in the formation of images in apertureless scanning near-field optical microscopy," Opt. Commun. 174, 91-98 (2000).
[CrossRef]

D. Barchiesi, "Time-frequency analysis: a tool to discriminate artifacts from near-field optical data," J. Microsc. 202, 332-338 (2000).
[CrossRef]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

B. Knoll and K. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

1999 (3)

W. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAl/As laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J. Appl. Phys. 5, 269-275 (1999).
[CrossRef]

D. Barchiesi and T. Gharbi, "Local spectral information in the near-field with wavelet analysis and entropy," Appl. Opt. 38, 6587-6596 (1999).
[CrossRef]

T. Gharbi and D. Barchiesi, "Local signal processing to evaluate resolution in SNOM images using 1D wavelets," Opt. Commun. 177, 85-93 (1999).
[CrossRef]

1997 (1)

1995 (1)

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

1994 (1)

1989 (1)

L. Cohen, "Time-frequency distribution: a review," Proc. IEEE 77, 941-981 (1989).
[CrossRef]

1980 (1)

T. A. C. M. Claasen and W. F. G. Mecklenbräuker, "The Wigner distribution:a Tool for time-frequency signal analysis," Phillips J. Res. 35, 217-250 (1980).

Adam, P. M.

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, "Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection," J. Appl. Phys. B 84, 233-238 (2006).
[CrossRef]

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

P. M. Adam, J. L. Bijeon, G. Viardot, and P. Royer, "Analysis of the influence of the tip vibration in the formation of images in apertureless scanning near-field optical microscopy," Opt. Commun. 174, 91-98 (2000).
[CrossRef]

Allegrini, M.

P. G. Gucciardi, G. Bachelier, and M. Allegrini, "Far-field background suppression in tip-modulated apertureless near-field optical microscopy," J. Appl. Phys. 99, 124309 (2006).
[CrossRef]

Bachelier, G.

P. G. Gucciardi, G. Bachelier, and M. Allegrini, "Far-field background suppression in tip-modulated apertureless near-field optical microscopy," J. Appl. Phys. 99, 124309 (2006).
[CrossRef]

Bachelot, R.

W. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAl/As laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J. Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Barchiesi, D.

D. Barchiesi, T. Grosges, and A. Vial, "Measurement of decay lengths of evanescent waves: the lock-in nonlinear filtering," New J. Phys. 8, 263 (2006).
[CrossRef]

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, "Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection," J. Appl. Phys. B 84, 233-238 (2006).
[CrossRef]

D. Barchiesi, "Scanning near-field optical data contrast measurement: a tomographylike near-field reconstruction," Appl. Opt. 45, 7597-7601 (2006).
[CrossRef] [PubMed]

T. Grosges and D. Barchiesi, "Tomography of the near-field optical signal," Opt. Lett. 31, 3435-3437 (2006).
[CrossRef] [PubMed]

D. Barchiesi and T. Grosges, "Signal reconstruction from a scanning near-field optical microscopy approach curve," Opt. Express 13, 6519-6526 (2005).
[CrossRef] [PubMed]

J. Salvi, D. Barchiesi, and D. Courjon, "Use of a resonant optical cavity to increase the spectral density of near-field optical images," Opt. Commun. 197, 267-273 (2001).
[CrossRef]

T. Gharbi, D. Barchiesi, O. Bergossi, H. Wioland, and C. Richard, "Optical near-field data analysis through time-frequency distributions: application to the characterization and the separation of the image spectral content by reassignment," J. Opt. Soc. Am. A 17, 2513-2519 (2000).
[CrossRef]

D. Barchiesi, "Time-frequency analysis: a tool to discriminate artifacts from near-field optical data," J. Microsc. 202, 332-338 (2000).
[CrossRef]

D. Barchiesi and T. Gharbi, "Local spectral information in the near-field with wavelet analysis and entropy," Appl. Opt. 38, 6587-6596 (1999).
[CrossRef]

T. Gharbi and D. Barchiesi, "Local signal processing to evaluate resolution in SNOM images using 1D wavelets," Opt. Commun. 177, 85-93 (1999).
[CrossRef]

D. Barchiesi, O. Bergossi, M. Spajer and C. Pieralli, "Image resolution in reflection scanning near-field optical microscopy (R-SNOM) using shear-force (ShF) feedback:characterization using spline and fourier spectrum," Appl. Opt. 36, 2171-2177 (1997).
[CrossRef] [PubMed]

Bergossi, O.

Bijeon, J. L.

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

P. M. Adam, J. L. Bijeon, G. Viardot, and P. Royer, "Analysis of the influence of the tip vibration in the formation of images in apertureless scanning near-field optical microscopy," Opt. Commun. 174, 91-98 (2000).
[CrossRef]

Carminati, R.

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

Claasen, T. A. C. M.

T. A. C. M. Claasen and W. F. G. Mecklenbräuker, "The Wigner distribution:a Tool for time-frequency signal analysis," Phillips J. Res. 35, 217-250 (1980).

Cohen, L.

L. Cohen, "Time-frequency distribution: a review," Proc. IEEE 77, 941-981 (1989).
[CrossRef]

Courjon, D.

J. Salvi, D. Barchiesi, and D. Courjon, "Use of a resonant optical cavity to increase the spectral density of near-field optical images," Opt. Commun. 197, 267-273 (2001).
[CrossRef]

de la Chapelle, M. Lamy

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

Déturche, R.

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

Diziain, S.

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, "Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection," J. Appl. Phys. B 84, 233-238 (2006).
[CrossRef]

Gharbi, T.

Gradshteyn, I. S.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1994).

Greffet, J. J.

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

Grosges, T.

D. Barchiesi, T. Grosges, and A. Vial, "Measurement of decay lengths of evanescent waves: the lock-in nonlinear filtering," New J. Phys. 8, 263 (2006).
[CrossRef]

T. Grosges and D. Barchiesi, "Tomography of the near-field optical signal," Opt. Lett. 31, 3435-3437 (2006).
[CrossRef] [PubMed]

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, "Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection," J. Appl. Phys. B 84, 233-238 (2006).
[CrossRef]

D. Barchiesi and T. Grosges, "Signal reconstruction from a scanning near-field optical microscopy approach curve," Opt. Express 13, 6519-6526 (2005).
[CrossRef] [PubMed]

Gucciardi, P. G.

P. G. Gucciardi, G. Bachelier, and M. Allegrini, "Far-field background suppression in tip-modulated apertureless near-field optical microscopy," J. Appl. Phys. 99, 124309 (2006).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Hudlet, S.

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

Inouye, Y.

Kawata, S.

Keilmann, F.

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Keilmann, K.

B. Knoll and K. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

Knoll, B.

B. Knoll and K. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

Lim, J. S.

J. S. Lim, Two Dimensional Signal and Image Processing (Prentice-Hall, 1990).

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Mecklenbräuker, W. F. G.

T. A. C. M. Claasen and W. F. G. Mecklenbräuker, "The Wigner distribution:a Tool for time-frequency signal analysis," Phillips J. Res. 35, 217-250 (1980).

Pieralli, C.

Porto, J. A.

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

Richard, C.

Royer, P.

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

P. M. Adam, J. L. Bijeon, G. Viardot, and P. Royer, "Analysis of the influence of the tip vibration in the formation of images in apertureless scanning near-field optical microscopy," Opt. Commun. 174, 91-98 (2000).
[CrossRef]

W. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAl/As laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J. Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Ryzhik, I. M.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1994).

Salvi, J.

J. Salvi, D. Barchiesi, and D. Courjon, "Use of a resonant optical cavity to increase the spectral density of near-field optical images," Opt. Commun. 197, 267-273 (2001).
[CrossRef]

Spajer, M.

Stashkevitch, A.

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

Thomas, B.

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

Vial, A.

D. Barchiesi, T. Grosges, and A. Vial, "Measurement of decay lengths of evanescent waves: the lock-in nonlinear filtering," New J. Phys. 8, 263 (2006).
[CrossRef]

Viardot, G.

P. M. Adam, J. L. Bijeon, G. Viardot, and P. Royer, "Analysis of the influence of the tip vibration in the formation of images in apertureless scanning near-field optical microscopy," Opt. Commun. 174, 91-98 (2000).
[CrossRef]

Walford, N. J.

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

Wickramsinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Wioland, H.

Wurtz, W.

W. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAl/As laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J. Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Appl. Opt. (3)

Eur. Phys. J. Appl. Phys. (1)

W. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAl/As laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J. Appl. Phys. 5, 269-275 (1999).
[CrossRef]

J. Appl. Phys. (2)

P. G. Gucciardi, G. Bachelier, and M. Allegrini, "Far-field background suppression in tip-modulated apertureless near-field optical microscopy," J. Appl. Phys. 99, 124309 (2006).
[CrossRef]

N. J. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001).
[CrossRef]

J. Appl. Phys. B (1)

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, "Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection," J. Appl. Phys. B 84, 233-238 (2006).
[CrossRef]

J. Microsc. (1)

D. Barchiesi, "Time-frequency analysis: a tool to discriminate artifacts from near-field optical data," J. Microsc. 202, 332-338 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

New J. Phys. (1)

D. Barchiesi, T. Grosges, and A. Vial, "Measurement of decay lengths of evanescent waves: the lock-in nonlinear filtering," New J. Phys. 8, 263 (2006).
[CrossRef]

Opt. Commun. (4)

B. Knoll and K. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

P. M. Adam, J. L. Bijeon, G. Viardot, and P. Royer, "Analysis of the influence of the tip vibration in the formation of images in apertureless scanning near-field optical microscopy," Opt. Commun. 174, 91-98 (2000).
[CrossRef]

J. Salvi, D. Barchiesi, and D. Courjon, "Use of a resonant optical cavity to increase the spectral density of near-field optical images," Opt. Commun. 197, 267-273 (2001).
[CrossRef]

T. Gharbi and D. Barchiesi, "Local signal processing to evaluate resolution in SNOM images using 1D wavelets," Opt. Commun. 177, 85-93 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phillips J. Res. (1)

T. A. C. M. Claasen and W. F. G. Mecklenbräuker, "The Wigner distribution:a Tool for time-frequency signal analysis," Phillips J. Res. 35, 217-250 (1980).

Phys. Rev. Lett. (1)

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

L. Cohen, "Time-frequency distribution: a review," Proc. IEEE 77, 941-981 (1989).
[CrossRef]

Science (1)

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Ultramicroscopy (1)

S. Diziain, J. L. Bijeon, P. M. Adam, M. Lamy de la Chapelle, B. Thomas, R. Déturche, and P. Royer, "Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques," Ultramicroscopy 107, 16-24 (2007).
[CrossRef]

Other (2)

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1994).

J. S. Lim, Two Dimensional Signal and Image Processing (Prentice-Hall, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

AFM image of a sample composed of 60 100   nm diameter latex spheres deposited on a glass substrate.

Fig. 2
Fig. 2

SNOM data of a sample composed of 60 100   nm diameter latex spheres deposited on a glass substrate: (a) H 0 , (b) H 1 , (c) H 2 , and (d) H 3 are the amplitudes of the DC term, the fundamental, the second, and the third Fourier harmonics of the optical signal given through the lock-in, respectively; (e) the reconstructed amplitude R 3 .

Fig. 3
Fig. 3

SNOM data of a sample composed of 60 100   nm diameter latex spheres deposited on a glass substrate: (a) Φ ( H 1 ) , (b) Φ ( H 2 ) , and (c) Φ ( H 3 ) are the phases of the fundamental, the second, and the third Fourier harmonics of the optical signal given through the lock-in, respectively; (d) the phase of the reconstructed signal Φ ( R 3 ) .

Fig. 4
Fig. 4

(a) Fourier spectrum of R 3 and (b) filter f 2 used to process the SNOM signal.

Fig. 5
Fig. 5

Filtered reconstructed (a) ASNOM signal f 2 ( R 3 ) and (b) its filtered phase f 2 ( Φ ( R 3 ) ) .

Fig. 6
Fig. 6

Time–frequency analysis (a) and (c) of the reconstructed signal R 3 and (b) and (d) for the filtered reconstructed ASNOM signal f 2 ( R 3 ) for the SPWD g and h filter's size equal to 3 (Shannon–Whittaker criterion) and 11 pixels, respectively. The Wigner–Ville transform is applied to the signal located by the white line showed in Fig. 1.

Fig. 7
Fig. 7

Time–frequency analysis of (a) H 0 , (b) H 1 , (c) H 2 , and (d) H 3 . The Wigner–Ville transform is applied to the signal located by the white line showed in Fig. 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R 3 ( x , y , z ) = H 0 ( x , y ) T 0 [ ( z A ) / A ] + 2 n = 1 3 H n ( x , y ) T n [ ( z A ) / A ] ,
SPWD s ( x , f ) = + h ( τ ) exp ( j 2 π τ f ) + g ( u x ) × s ( u + τ 2 ) s * ( u τ 2 ) d u d τ ,

Metrics