Abstract

We demonstrate, what is to the best of our knowledge, a novel optical tomographic method for the visualization of the inner structure of scattering media such as biological tissue in the near-infrared region. We constructed a scanning confocal imaging system with a cross-axes arrangement using optical fibers. This system is based on the optical heterodyne technique and enables the detection of very weak coherence photons that are generated in the spatially restricted confocal region and scattered laterally (90°) against an incident beam. To evaluate the fundamental imaging capabilities of the system, we assessed measurements from scattering phantoms composed of an Intralipid suspension with varying volume concentrations. The results of this study demonstrate that the right-angled scattered light adheres to the Lambert–Beer law and that the present system can detect light propagating through a distance of 31l of the mean free path. An inclusion as small as 100  μm can be discriminated in a scattering media with an optical thickness of 4. We investigated the potential of the proposed system for imaging biological tissues in preliminary experiments using samples of chicken breast tissue.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  2. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
    [CrossRef]
  3. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
    [CrossRef] [PubMed]
  4. T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
    [CrossRef] [PubMed]
  5. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, "Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data," Opt. Lett. 20, 2128-2130 (1995).
    [CrossRef] [PubMed]
  6. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Appl. Opt. 36, 10-20 (1997).
    [CrossRef] [PubMed]
  7. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
    [CrossRef]
  8. T. J. Farell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
    [CrossRef]
  9. Y. Yamashita, A. Maki, and H. Koizumi, "Near-infrared topographic measurement system: imaging absorbers localized in a scattering medium," Rev. Sci. Instrum. 67, 730-732 (1996).
    [CrossRef]
  10. S. B. Colak, D. G. Papaioannou, G. W. t'Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, "Tomographic image reconstruction from optical projections in light-diffusing media," Appl. Opt. 36, 180-213 (1997).
    [CrossRef] [PubMed]
  11. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160-ms temporal resolution," Opt. Express 6, 49-57 (2000).
    [CrossRef] [PubMed]
  12. C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
    [CrossRef]
  13. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  14. M. E. Brezinski and J. G. Fujimoto, "Optical coherence tomography: high-resolution imaging in nontransparent tissue," IEEE J. Sel. Top. Quantum Electron. 5, 1185-11192 (1999).
    [CrossRef]
  15. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  16. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).
  17. A. Schmidt, R. Corey, and P. Saulnier, "Imaging through random media by use of low-coherence optical heterodyning," Opt. Lett. 20, 404-406 (1995).
    [CrossRef] [PubMed]
  18. B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).
    [CrossRef]
  19. B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
    [CrossRef]
  20. Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
    [CrossRef]
  21. S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
    [CrossRef]
  22. A. Yariv, Introduction to Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, 1985).
  23. J. J. Snyder, "Wide dynamic range optical power measurement using coherent heterodyne radiometry," Appl. Opt. 27, 4465-4469 (1998).
    [CrossRef]
  24. A. E. Siegman, "The antenna properties of optical heterodyne receives," Appl. Opt. 5, 1558-1594 (1996).
  25. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).
  26. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
    [CrossRef] [PubMed]
  27. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]
  28. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  29. K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).
  30. K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
    [CrossRef]
  31. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
    [CrossRef]
  32. S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
    [PubMed]
  33. G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998).
    [CrossRef]

2005 (1)

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

2004 (2)

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

2003 (3)

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
[CrossRef]

2000 (2)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160-ms temporal resolution," Opt. Express 6, 49-57 (2000).
[CrossRef] [PubMed]

1999 (2)

M. E. Brezinski and J. G. Fujimoto, "Optical coherence tomography: high-resolution imaging in nontransparent tissue," IEEE J. Sel. Top. Quantum Electron. 5, 1185-11192 (1999).
[CrossRef]

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

1998 (5)

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998).
[CrossRef]

J. J. Snyder, "Wide dynamic range optical power measurement using coherent heterodyne radiometry," Appl. Opt. 27, 4465-4469 (1998).
[CrossRef]

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

1997 (2)

1996 (4)

Y. Yamashita, A. Maki, and H. Koizumi, "Near-infrared topographic measurement system: imaging absorbers localized in a scattering medium," Rev. Sci. Instrum. 67, 730-732 (1996).
[CrossRef]

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).
[CrossRef]

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

A. E. Siegman, "The antenna properties of optical heterodyne receives," Appl. Opt. 5, 1558-1594 (1996).

1995 (2)

1992 (1)

T. J. Farell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef]

1991 (3)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
[PubMed]

1989 (1)

1941 (1)

L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Akatsuka, T.

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).
[CrossRef]

Anderson, E. R.

Arridge, S. R.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Boas, D. A.

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Bouma, B. E.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

Brenner, M.

Brezinski, M. E.

M. E. Brezinski and J. G. Fujimoto, "Optical coherence tomography: high-resolution imaging in nontransparent tissue," IEEE J. Sel. Top. Quantum Electron. 5, 1185-11192 (1999).
[CrossRef]

Chan, K. P.

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).
[CrossRef]

Chance, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Colak, S. B.

Coquoz, O.

Corey, R.

Dale, A. M.

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Devaraj, B.

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).
[CrossRef]

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

Douek, M.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Dunn, A. K.

Dunsby, C.

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
[CrossRef]

Emori, R.

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Everdell, N.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Fantini, S.

Farell, T. J.

T. J. Farell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef]

Filiaci, M. E.

Fishkin, J. B.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Franceschini, M. A.

French, P. M. W.

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
[CrossRef]

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Fujimoto, J. G.

M. E. Brezinski and J. G. Fujimoto, "Optical coherence tomography: high-resolution imaging in nontransparent tissue," IEEE J. Sel. Top. Quantum Electron. 5, 1185-11192 (1999).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fukuchi, K.

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).

Gemert, M. J. C.

Gibson, A.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Gratton, E.

Greenstein, J. L.

L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hebden, J. C.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Henyey, L. G.

L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Inaba, H

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

Inaba, H.

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).
[CrossRef]

Inage, H.

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Ishikawa, A.

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).

Jacques, S. L.

S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
[PubMed]

Jiang, H.

Kaschke, M.

Kobayashi, M.

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

Koizumi, H.

Y. Yamashita, A. Maki, and H. Koizumi, "Near-infrared topographic measurement system: imaging absorbers localized in a scattering medium," Rev. Sci. Instrum. 67, 730-732 (1996).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lin, S.-P.

Maki, A.

Y. Yamashita, A. Maki, and H. Koizumi, "Near-infrared topographic measurement system: imaging absorbers localized in a scattering medium," Rev. Sci. Instrum. 67, 730-732 (1996).
[CrossRef]

Marquez, G.

McAuliffe, D. J.

S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
[PubMed]

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Melissen, J. B. M.

Moes, C. J. M.

Moesta, K. T.

Osterberg, U. L.

Paasschens, J. C. J.

Papaioannou, D. G.

Patterson, M. S.

Paulsen, K. D.

Pogue, B. W.

Prahl, S. A.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sasaki, Y.

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Saulnier, P.

Schlag, P. M.

Schmidt, A.

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

Schomberg, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schwartz, J. A.

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Siegman, A. E.

A. E. Siegman, "The antenna properties of optical heterodyne receives," Appl. Opt. 5, 1558-1594 (1996).

Snyder, J. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Suzuki, J.

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takagi, M.

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Takeda, M.

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

Taniguchi, H.

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Tanosaki, S.

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

Tearney, G. J.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

Thomsen, S. L.

t'Hooft, G. W.

Toronov, V.

Tromberg, B. J.

Tuchin, V.

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

Usa, M.

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).
[CrossRef]

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

van Asten, N. A. A. J.

van der Mark, M. B.

van Marle, J.

van Staveren, H. J.

Walker, S. A.

Wang, L. V.

Watanabe, Y.

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

Wilson, B.

T. J. Farell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef]

Wilson, B. C.

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Yamada, M.

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

Yamashita, Y.

Y. Yamashita, A. Maki, and H. Koizumi, "Near-infrared topographic measurement system: imaging absorbers localized in a scattering medium," Rev. Sci. Instrum. 67, 730-732 (1996).
[CrossRef]

Yariv, A.

A. Yariv, Introduction to Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, 1985).

Yates, T.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Yuasa, T.

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

Yusof, R. M.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Appl. Opt. (8)

M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Appl. Opt. 36, 10-20 (1997).
[CrossRef] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

S. B. Colak, D. G. Papaioannou, G. W. t'Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, "Tomographic image reconstruction from optical projections in light-diffusing media," Appl. Opt. 36, 180-213 (1997).
[CrossRef] [PubMed]

J. J. Snyder, "Wide dynamic range optical power measurement using coherent heterodyne radiometry," Appl. Opt. 27, 4465-4469 (1998).
[CrossRef]

A. E. Siegman, "The antenna properties of optical heterodyne receives," Appl. Opt. 5, 1558-1594 (1996).

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

Astrophys. J. (1)

L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).
[CrossRef]

M. E. Brezinski and J. G. Fujimoto, "Optical coherence tomography: high-resolution imaging in nontransparent tissue," IEEE J. Sel. Top. Quantum Electron. 5, 1185-11192 (1999).
[CrossRef]

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

IEEE Sens. J. (1)

Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003).
[CrossRef]

J. Phys. D (1)

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
[CrossRef]

Jpn. J. Opt. (1)

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).

Med. Phys. (1)

T. J. Farell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Rev. (1)

S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003).
[CrossRef]

Photochem. Photobiol. (1)

S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
[PubMed]

Phys. Med. Biol. (2)

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Phys. Rev. E (1)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Rev. Sci. Instrum. (2)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Y. Yamashita, A. Maki, and H. Koizumi, "Near-infrared topographic measurement system: imaging absorbers localized in a scattering medium," Rev. Sci. Instrum. 67, 730-732 (1996).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (4)

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).

A. Yariv, Introduction to Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, 1985).

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Schematic of the proposed measuring system based on the Mach–Zehnder heterodyne interferometer with fiber optics. A Nd:YAG laser ( λ = 1064   nm ) was used as a light source. OI1–3, optical isolators; CL1–7, collimating lenses; OC1–2, optical couplers; OL 1 and OL 2 , objective lenses; AOM 1 and AOM 2 , acousto-optic modulators; WP, wave plate; PD, photodiode; M, mirror (optional). AOM 1 upshifts the beam frequency by 83.4 MHz; AOM 2 downshifts the beam frequency by 80 MHz.

Fig. 2
Fig. 2

(Color online) (a) Typical power spectra obtained by the system. (b) Dynamic range and minimum-detectable optical power of the system.

Fig. 3
Fig. 3

Schematics of samples used in the experiments. (a) Cuvette filled with Intralipid solution. Geometrical path length L is defined as the sum of incident path L i and detected path L d . (b) Cuvette filled with Intralipid solution that includes three human hairs positioned at A, B, and C. (c) Chicken breast sample in acrylic container. Inner and outer diameters of the container are 21 and 24   mm , respectively. The chicken breast consists of skin and muscle tissue. A 21-gauge (diameter 0 .8   mm ) stainless steel needle was embedded in the muscle tissue.

Fig. 4
Fig. 4

(Color online) Tomographic images of cuvettes filled with Intralipid solution with volume concentrations C v of (a) 5%, (b) 10%, and (c) 15%.

Fig. 5
Fig. 5

Intensity profiles as a function of geometrical path length L along the dashed lines shown in Figs. 4(a)–4(c). Scales at the top of the figure indicate optical thickness, defined as Ll, for each value of C v .

Fig. 6
Fig. 6

(Color online) Tomographic images of scattering phantoms [see Fig. 3(b)], including three human hairs. The volume concentration of Intralipid solution is 1%.

Fig. 7
Fig. 7

(Color online) Tomographic images of chicken breast tissue with a stainless steel needle inserted.

Fig. 8
Fig. 8

Intensity profiles along the dashed lines shown in Fig. 7.

Metrics