Abstract

We review integrated optical sensors for functional brain imaging, localized index-of-refraction sensing as part of a lab-on-a-chip, and in vivo continuous monitoring of tumor and cancer stem cells. We present semiconductor-based sensors and imaging systems for these applications. Measured intrinsic optical signals and tissue optics simulations indicate the need for high dynamic range and low dark-current neural sensors. Simulated and measured reflectance spectra from our guided resonance filter demonstrate the capability for index-of-refraction sensing on cellular scales, compatible with integrated biosensors. Finally, we characterized a thermally evaporated emission filter that can be used to improve sensitivity for in vivo fluorescence sensing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
    [CrossRef] [PubMed]
  2. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005).
    [CrossRef] [PubMed]
  3. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
    [CrossRef] [PubMed]
  4. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005).
    [CrossRef] [PubMed]
  5. J. A. Conchello and J. W. Lichtman, "Optical sectioning microscopy," Nat. Methods 2, 920-931 (2005).
    [CrossRef] [PubMed]
  6. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "in vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
    [CrossRef] [PubMed]
  7. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
    [CrossRef] [PubMed]
  8. L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
    [CrossRef] [PubMed]
  9. S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
    [CrossRef] [PubMed]
  10. W. Piyawattanametha, R. P. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
    [CrossRef] [PubMed]
  11. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, "Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy," Appl. Opt. 45, 2545-2554 (2006).
    [CrossRef] [PubMed]
  12. T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004).
    [CrossRef] [PubMed]
  13. K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, "Zero mode waveguides for single-molecule spectroscopy on lipid membranes," Biophys. J. 90, 3288-3299 (2006).
    [CrossRef] [PubMed]
  14. K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
    [CrossRef] [PubMed]
  15. K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
    [CrossRef] [PubMed]
  16. J. M. Godin, V. Lien, and Y.-H. Lo, "Two-dimensional lenses microfabricated in PDMS for integrated fluidic photonic devices," in 2006 Conference on Lasers and Electro-Optics (CLEO, 2006).
    [CrossRef]
  17. J. Seo and L. P. Lee, "Disposable integrated microfluidics with self-aligned planar microlenses," Sens. Actuators 99, 615-622 (2004).
    [CrossRef]
  18. Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
    [CrossRef]
  19. V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
    [CrossRef]
  20. E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
    [CrossRef]
  21. E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
    [CrossRef]
  22. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986).
    [CrossRef] [PubMed]
  23. V. A. Kalatsky and M. P. Stryker, "New paradigm for optical imaging: Temporally encoded maps of intrinsic signal," Neuron 38, 529-545 (2003).
    [CrossRef] [PubMed]
  24. D. B. Polley, E. Kvasnak, and R. D. Frostig, "Naturalistic experience transforms sensory maps in the adult cortex of caged animals," Nature 429, 67-71 (2004).
    [CrossRef] [PubMed]
  25. M. Francheschini and D. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004).
    [CrossRef]
  26. A. W. Toga, J. C. Mazziotta, A. W. Toga, and J. C. Mazziotta, Brain Mapping: the Methods (Academic, 1996).
  27. S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
    [CrossRef] [PubMed]
  28. E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
    [CrossRef] [PubMed]
  29. M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
    [CrossRef] [PubMed]
  30. D. Rector, K. Carter, P. Volegov, and J. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005).
    [CrossRef] [PubMed]
  31. M. Stetter and K. Obermayer, "Simulation of scanning laser techniques for optical imaging of blood-related intrinsic signals," J. Opt. Soc. Am. A 16, 58-70 (1999).
    [CrossRef]
  32. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, "Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain," Opt. Lett. 30, 1354-1356 (2005).
    [CrossRef] [PubMed]
  33. T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
    [PubMed]
  34. Laboratory of Neuro Imaging, "Rat Atlas" (The Laboratory of Neuro Imaging at the University of California at Los Angeles (LONI), 2006), http://www.loni.ucla.edu/.
  35. D. Rector, G. Poe, M. Kristensen, and R. Harper, "Light scattering changes follow evoked potentials from hippocampal Schaffer collateral stimulation," J. Neurophysiol. 78, 1707-1713 (1997).
    [PubMed]
  36. L. Cohen, B. Hille, and R. Keynes, "Changes in axon birefringence during the action potential," J. Physiology 211, 495-515 (1970).
  37. L. Cohen, R. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
    [PubMed]
  38. V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
    [CrossRef]
  39. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells," Biophys. J. 90, 1-8 (2006).
    [CrossRef]
  40. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
    [CrossRef]
  41. T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005).
    [CrossRef]
  42. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  43. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
    [CrossRef] [PubMed]
  44. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000).
    [CrossRef]
  45. R. S. Negrin and C. H. Contag, "In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease," Nat. Rev. Immunol. 6, 484-490 (2006).
    [CrossRef] [PubMed]
  46. A. De and S. S. Gambhir, "Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer," FASEB J. 19, 2017-2019 (2005).
    [PubMed]
  47. Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
    [CrossRef]
  48. D. Abookasis, D. J. Cuccia, J. S. You, A. J. Durkin, and B. J. Tromberg, "Towards 3D mapping and correction of optical properties in turbid media based on spatially modulated illumination," in 2006 Biomedical Optics Topical Meeting (Optical Society of America, 2006).

2006 (9)

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, "Zero mode waveguides for single-molecule spectroscopy on lipid membranes," Biophys. J. 90, 3288-3299 (2006).
[CrossRef] [PubMed]

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells," Biophys. J. 90, 1-8 (2006).
[CrossRef]

R. S. Negrin and C. H. Contag, "In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease," Nat. Rev. Immunol. 6, 484-490 (2006).
[CrossRef] [PubMed]

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, "Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy," Appl. Opt. 45, 2545-2554 (2006).
[CrossRef] [PubMed]

W. Piyawattanametha, R. P. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

2005 (13)

D. Rector, K. Carter, P. Volegov, and J. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, "Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain," Opt. Lett. 30, 1354-1356 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "in vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

A. De and S. S. Gambhir, "Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer," FASEB J. 19, 2017-2019 (2005).
[PubMed]

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005).
[CrossRef]

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
[CrossRef]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005).
[CrossRef] [PubMed]

J. A. Conchello and J. W. Lichtman, "Optical sectioning microscopy," Nat. Methods 2, 920-931 (2005).
[CrossRef] [PubMed]

2004 (8)

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004).
[CrossRef] [PubMed]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

J. Seo and L. P. Lee, "Disposable integrated microfluidics with self-aligned planar microlenses," Sens. Actuators 99, 615-622 (2004).
[CrossRef]

Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
[CrossRef]

D. B. Polley, E. Kvasnak, and R. D. Frostig, "Naturalistic experience transforms sensory maps in the adult cortex of caged animals," Nature 429, 67-71 (2004).
[CrossRef] [PubMed]

M. Francheschini and D. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004).
[CrossRef]

E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

2003 (3)

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

V. A. Kalatsky and M. P. Stryker, "New paradigm for optical imaging: Temporally encoded maps of intrinsic signal," Neuron 38, 529-545 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

2000 (2)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

1999 (1)

1997 (2)

D. Rector, G. Poe, M. Kristensen, and R. Harper, "Light scattering changes follow evoked potentials from hippocampal Schaffer collateral stimulation," J. Neurophysiol. 78, 1707-1713 (1997).
[PubMed]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

1986 (1)

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986).
[CrossRef] [PubMed]

1972 (1)

L. Cohen, R. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

1970 (1)

L. Cohen, B. Hille, and R. Keynes, "Changes in axon birefringence during the action potential," J. Physiology 211, 495-515 (1970).

Abookasis, D.

D. Abookasis, D. J. Cuccia, J. S. You, A. J. Durkin, and B. J. Tromberg, "Towards 3D mapping and correction of optical properties in turbid media based on spatially modulated illumination," in 2006 Biomedical Optics Topical Meeting (Optical Society of America, 2006).

Anderson, E. P.

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells," Biophys. J. 90, 1-8 (2006).
[CrossRef]

Barretto, R. P.

Baumal, C.

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Berger, A. J.

Bevilacqua, F.

Boas, D.

M. Francheschini and D. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004).
[CrossRef]

Boas, D. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

Brezinski, M. E.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

Bright, F. V.

V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
[CrossRef]

Bukowski, R. M.

V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
[CrossRef]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Cang, J.

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Carey, G.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Carlson, K. D.

Carter, K.

D. Rector, K. Carter, P. Volegov, and J. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005).
[CrossRef] [PubMed]

Cartwright, A. N.

V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
[CrossRef]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Cerussi, A. E.

Chan, N. Y.

T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004).
[CrossRef] [PubMed]

Chediak, J. A.

Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
[CrossRef]

Chen, X.

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

Cheng, Z.

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

Cheung, N.

Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
[CrossRef]

Cheung, Y. K.

K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, "Zero mode waveguides for single-molecule spectroscopy on lipid membranes," Biophys. J. 90, 3288-3299 (2006).
[CrossRef] [PubMed]

Chidley, M. D.

Chodavarapu, V. P.

V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
[CrossRef]

Choi, J.

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

Cocker, E. D.

Cohen, L.

L. Cohen, R. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

L. Cohen, B. Hille, and R. Keynes, "Changes in axon birefringence during the action potential," J. Physiology 211, 495-515 (1970).

Conchello, J. A.

J. A. Conchello and J. W. Lichtman, "Optical sectioning microscopy," Nat. Methods 2, 920-931 (2005).
[CrossRef] [PubMed]

Contag, C. H.

R. S. Negrin and C. H. Contag, "In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease," Nat. Rev. Immunol. 6, 484-490 (2006).
[CrossRef] [PubMed]

T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004).
[CrossRef] [PubMed]

Cook, L. J.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Courtney, B. K.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

Craighead, H. G.

K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, "Zero mode waveguides for single-molecule spectroscopy on lipid membranes," Biophys. J. 90, 3288-3299 (2006).
[CrossRef] [PubMed]

Cuccia, D. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, "Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain," Opt. Lett. 30, 1354-1356 (2005).
[CrossRef] [PubMed]

D. Abookasis, D. J. Cuccia, J. S. You, A. J. Durkin, and B. J. Tromberg, "Towards 3D mapping and correction of optical properties in turbid media based on spatially modulated illumination," in 2006 Biomedical Optics Topical Meeting (Optical Society of America, 2006).

Dale, A. M.

Davidov, D.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells," Biophys. J. 90, 1-8 (2006).
[CrossRef]

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

De, A.

A. De and S. S. Gambhir, "Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer," FASEB J. 19, 2017-2019 (2005).
[PubMed]

Deich, J.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Denk, W.

F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005).
[CrossRef] [PubMed]

Descour, M. R.

Duker, J. S.

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Dunn, A. K.

Durkin, A. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, "Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain," Opt. Lett. 30, 1354-1356 (2005).
[CrossRef] [PubMed]

D. Abookasis, D. J. Cuccia, J. S. You, A. J. Durkin, and B. J. Tromberg, "Towards 3D mapping and correction of optical properties in turbid media based on spatially modulated illumination," in 2006 Biomedical Optics Topical Meeting (Optical Society of America, 2006).

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Fan, S.

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Flusberg, B. A.

Franceschini, M. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

Francheschini, M.

M. Francheschini and D. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004).
[CrossRef]

Friesem, A. A.

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Frostig, R. D.

D. B. Polley, E. Kvasnak, and R. D. Frostig, "Naturalistic experience transforms sensory maps in the adult cortex of caged animals," Nature 429, 67-71 (2004).
[CrossRef] [PubMed]

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986).
[CrossRef] [PubMed]

Fujimoto, J. G.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

Gambhir, S. S.

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

A. De and S. S. Gambhir, "Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer," FASEB J. 19, 2017-2019 (2005).
[PubMed]

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

George, J.

D. Rector, K. Carter, P. Volegov, and J. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005).
[CrossRef] [PubMed]

Gheysens, O.

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

Giattina, S. D.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

Gilbert, C. D.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986).
[CrossRef] [PubMed]

Godin, J. M.

J. M. Godin, V. Lien, and Y.-H. Lo, "Two-dimensional lenses microfabricated in PDMS for integrated fluidic photonic devices," in 2006 Conference on Lasers and Electro-Optics (CLEO, 2006).
[CrossRef]

Golosovsky, M.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

Gratton, E.

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

Grimm, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Grinvald, A.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986).
[CrossRef] [PubMed]

Guiou, M. W.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Gupta, R.

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

Ha, W.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Harman, M.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

Harper, R.

D. Rector, G. Poe, M. Kristensen, and R. Harper, "Light scattering changes follow evoked potentials from hippocampal Schaffer collateral stimulation," J. Neurophysiol. 78, 1707-1713 (1997).
[PubMed]

Harris, J. S.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Helmchen, F.

F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005).
[CrossRef] [PubMed]

Herz, P. R.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

Hille, B.

L. Cohen, B. Hille, and R. Keynes, "Changes in axon birefringence during the action potential," J. Physiology 211, 495-515 (1970).

Hillman, E. M.

Jakubowski, D.

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Jung, J. C.

Kalatsky, V. A.

V. A. Kalatsky and M. P. Stryker, "New paradigm for optical imaging: Temporally encoded maps of intrinsic signal," Neuron 38, 529-545 (2003).
[CrossRef] [PubMed]

Kambara, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Kaneko, M.

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Katchalski, T.

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005).
[CrossRef]

Keren, S.

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

Keynes, R.

L. Cohen, R. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

L. Cohen, B. Hille, and R. Keynes, "Changes in axon birefringence during the action potential," J. Physiology 211, 495-515 (1970).

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

Kim, S. J.

V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
[CrossRef]

Kino, G. S.

T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004).
[CrossRef] [PubMed]

Klank, H.

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

Ko, T. H.

W. Piyawattanametha, R. P. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Kristensen, M.

D. Rector, G. Poe, M. Kristensen, and R. Harper, "Light scattering changes follow evoked potentials from hippocampal Schaffer collateral stimulation," J. Neurophysiol. 78, 1707-1713 (1997).
[PubMed]

Kurtz, A.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

Kutter, J. P.

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

Kvasnak, E.

D. B. Polley, E. Kvasnak, and R. D. Frostig, "Naturalistic experience transforms sensory maps in the adult cortex of caged animals," Nature 429, 67-71 (2004).
[CrossRef] [PubMed]

Landowne, D.

L. Cohen, R. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Lee, D.

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

J. Seo and L. P. Lee, "Disposable integrated microfluidics with self-aligned planar microlenses," Sens. Actuators 99, 615-622 (2004).
[CrossRef]

Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
[CrossRef]

Lee, T. T.

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Levi, J.

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

Levi, O.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Lichtman, J. W.

J. A. Conchello and J. W. Lichtman, "Optical sectioning microscopy," Nat. Methods 2, 920-931 (2005).
[CrossRef] [PubMed]

Lieke, E.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986).
[CrossRef] [PubMed]

Lien, V.

J. M. Godin, V. Lien, and Y.-H. Lo, "Two-dimensional lenses microfabricated in PDMS for integrated fluidic photonic devices," in 2006 Conference on Lasers and Electro-Optics (CLEO, 2006).
[CrossRef]

Lirtsman, V.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells," Biophys. J. 90, 1-8 (2006).
[CrossRef]

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

Liu, B.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

Lo, Y.-H.

J. M. Godin, V. Lien, and Y.-H. Lo, "Two-dimensional lenses microfabricated in PDMS for integrated fluidic photonic devices," in 2006 Conference on Lasers and Electro-Optics (CLEO, 2006).
[CrossRef]

Luo, Z.

Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
[CrossRef]

Mandella, M. J.

T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004).
[CrossRef] [PubMed]

Marowsky, G.

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005).
[CrossRef]

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

Mazziotta, J. C.

A. W. Toga, J. C. Mazziotta, A. W. Toga, and J. C. Mazziotta, Brain Mapping: the Methods (Academic, 1996).

A. W. Toga, J. C. Mazziotta, A. W. Toga, and J. C. Mazziotta, Brain Mapping: the Methods (Academic, 1996).

Michalos, A.

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

Moerner, W. E.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Mogensen, K. B.

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

Moran-Mirabal, J. M.

K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, "Zero mode waveguides for single-molecule spectroscopy on lipid membranes," Biophys. J. 90, 3288-3299 (2006).
[CrossRef] [PubMed]

Negrin, R. S.

R. S. Negrin and C. H. Contag, "In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease," Nat. Rev. Immunol. 6, 484-490 (2006).
[CrossRef] [PubMed]

Nemoto, M.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Ntziachristos, V.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Obermayer, K.

Paunescu, L.

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Piyawattanametha, W.

Poe, G.

D. Rector, G. Poe, M. Kristensen, and R. Harper, "Light scattering changes follow evoked potentials from hippocampal Schaffer collateral stimulation," J. Neurophysiol. 78, 1707-1713 (1997).
[PubMed]

Pogreb, R.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

Polley, D. B.

D. B. Polley, E. Kvasnak, and R. D. Frostig, "Naturalistic experience transforms sensory maps in the adult cortex of caged animals," Nature 429, 67-71 (2004).
[CrossRef] [PubMed]

Ra, H.

Rector, D.

D. Rector, K. Carter, P. Volegov, and J. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005).
[CrossRef] [PubMed]

D. Rector, G. Poe, M. Kristensen, and R. Harper, "Light scattering changes follow evoked potentials from hippocampal Schaffer collateral stimulation," J. Neurophysiol. 78, 1707-1713 (1997).
[PubMed]

Reichel, E.

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

Ripoll, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Rishpon, J.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

Rogers, A. H.

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Sacks-Granek, V.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

Saeki, Y.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Safonova, L.

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

Samiee, K. T.

K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, "Zero mode waveguides for single-molecule spectroscopy on lipid membranes," Biophys. J. 90, 3288-3299 (2006).
[CrossRef] [PubMed]

Sands, T. D.

Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
[CrossRef]

Schnitzer, M. J.

Schocket, L. S.

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Schuman, J. S.

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Selb, J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

Seo, J.

J. Seo and L. P. Lee, "Disposable integrated microfluidics with self-aligned planar microlenses," Sens. Actuators 99, 615-622 (2004).
[CrossRef]

Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
[CrossRef]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Shenoy, K. V.

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Sheth, S. A.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Shih, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Shortkroff, S.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

Smith, S. J

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Solgaard, O.

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

Soria, S.

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005).
[CrossRef]

Stamper, D. L.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

Stetter, M.

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

Stryker, M. P.

V. A. Kalatsky and M. P. Stryker, "New paradigm for optical imaging: Temporally encoded maps of intrinsic signal," Neuron 38, 529-545 (2003).
[CrossRef] [PubMed]

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Teitelbaum, E.

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005).
[CrossRef]

Thrush, E.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Titus, A. H.

V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
[CrossRef]

Toga, A. W.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

A. W. Toga, J. C. Mazziotta, A. W. Toga, and J. C. Mazziotta, Brain Mapping: the Methods (Academic, 1996).

A. W. Toga, J. C. Mazziotta, A. W. Toga, and J. C. Mazziotta, Brain Mapping: the Methods (Academic, 1996).

Tromberg, B. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, "Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain," Opt. Lett. 30, 1354-1356 (2005).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

D. Abookasis, D. J. Cuccia, J. S. You, A. J. Durkin, and B. J. Tromberg, "Towards 3D mapping and correction of optical properties in turbid media based on spatially modulated illumination," in 2006 Biomedical Optics Topical Meeting (Optical Society of America, 2006).

Volegov, P.

D. Rector, K. Carter, P. Volegov, and J. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005).
[CrossRef] [PubMed]

Walker, M. A.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Wang, T. D.

T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004).
[CrossRef] [PubMed]

Weissleder, R.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Wiesel, T. N.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986).
[CrossRef] [PubMed]

Witkin, A. J.

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

Wolf, U.

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

Xiong, Z.

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

You, J. S.

D. Abookasis, D. J. Cuccia, J. S. You, A. J. Durkin, and B. J. Tromberg, "Towards 3D mapping and correction of optical properties in turbid media based on spatially modulated illumination," in 2006 Biomedical Optics Topical Meeting (Optical Society of America, 2006).

Zacharakis, G.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells," Biophys. J. 90, 1-8 (2006).
[CrossRef]

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

Appl. Opt. (2)

Bioconjugate Chem. (1)

Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006).
[CrossRef]

Biophys. J. (2)

K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, "Zero mode waveguides for single-molecule spectroscopy on lipid membranes," Biophys. J. 90, 3288-3299 (2006).
[CrossRef] [PubMed]

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells," Biophys. J. 90, 1-8 (2006).
[CrossRef]

Electron. Lett. (1)

V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005).
[CrossRef]

Electrophoresis (1)

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

FASEB J. (1)

A. De and S. S. Gambhir, "Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer," FASEB J. 19, 2017-2019 (2005).
[PubMed]

Genes Dev. (1)

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Int. J. Cardiol. (1)

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005).
[CrossRef]

J. Biomed. Opt. (2)

T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

D. Rector, G. Poe, M. Kristensen, and R. Harper, "Light scattering changes follow evoked potentials from hippocampal Schaffer collateral stimulation," J. Neurophysiol. 78, 1707-1713 (1997).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol. (1)

L. Cohen, R. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

J. Physiology (1)

L. Cohen, B. Hille, and R. Keynes, "Changes in axon birefringence during the action potential," J. Physiology 211, 495-515 (1970).

Nat. Biotechnol. (1)

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

Nat. Methods (2)

F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005).
[CrossRef] [PubMed]

J. A. Conchello and J. W. Lichtman, "Optical sectioning microscopy," Nat. Methods 2, 920-931 (2005).
[CrossRef] [PubMed]

Nat. Rev. Immunol. (1)

R. S. Negrin and C. H. Contag, "In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease," Nat. Rev. Immunol. 6, 484-490 (2006).
[CrossRef] [PubMed]

Nature (2)

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986).
[CrossRef] [PubMed]

D. B. Polley, E. Kvasnak, and R. D. Frostig, "Naturalistic experience transforms sensory maps in the adult cortex of caged animals," Nature 429, 67-71 (2004).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Neuroimage (3)

M. Francheschini and D. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004).
[CrossRef]

M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002).
[CrossRef] [PubMed]

D. Rector, K. Carter, P. Volegov, and J. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005).
[CrossRef] [PubMed]

Neuron (1)

V. A. Kalatsky and M. P. Stryker, "New paradigm for optical imaging: Temporally encoded maps of intrinsic signal," Neuron 38, 529-545 (2003).
[CrossRef] [PubMed]

Ophthalmology (1)

L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005).
[CrossRef] [PubMed]

Science (1)

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

Sens. Actuators (2)

J. Seo and L. P. Lee, "Disposable integrated microfluidics with self-aligned planar microlenses," Sens. Actuators 99, 615-622 (2004).
[CrossRef]

Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004).
[CrossRef]

Sens. Actuators B (2)

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005).
[CrossRef]

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005).
[CrossRef]

Other (5)

T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006).
[PubMed]

Laboratory of Neuro Imaging, "Rat Atlas" (The Laboratory of Neuro Imaging at the University of California at Los Angeles (LONI), 2006), http://www.loni.ucla.edu/.

J. M. Godin, V. Lien, and Y.-H. Lo, "Two-dimensional lenses microfabricated in PDMS for integrated fluidic photonic devices," in 2006 Conference on Lasers and Electro-Optics (CLEO, 2006).
[CrossRef]

A. W. Toga, J. C. Mazziotta, A. W. Toga, and J. C. Mazziotta, Brain Mapping: the Methods (Academic, 1996).

D. Abookasis, D. J. Cuccia, J. S. You, A. J. Durkin, and B. J. Tromberg, "Towards 3D mapping and correction of optical properties in turbid media based on spatially modulated illumination," in 2006 Biomedical Optics Topical Meeting (Optical Society of America, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Illustration of an integrated sensor system. (b) SEM image of monolithically integrated source and detector.

Fig. 2
Fig. 2

(Color online) Example multiplexing scheme. A row of integrated sensors shares a single low-noise measurement system.

Fig. 3
Fig. 3

(Color online) Illustration of an integrated sensor array, embedded in a skull. The lasers, detectors, and micro-optics modules are similar to those in Fig. 1 and are located in the optics layer. The other two layers illustrate the circuits for processing detector data and controlling laser current.

Fig. 4
Fig. 4

(Color online) IOS signal and background levels versus wavelength for mouse visual cortex through skull. Error bars show variance in signal.

Fig. 5
Fig. 5

(Color online) (a) Slice of a CAD layout transferred from a coronal MRI cross section for rat brain. Inset, full CAD layout. (b) Wire frame representation of (a) overlaid with detector array and ASAP depth penetration simulation.

Fig. 6
Fig. 6

Detector received power versus distance from source for simulation from Fig. 5.

Fig. 7
Fig. 7

Comparison of dark current for 1 mm 2 Si, GaAs, and A l 0.3 G a 0.7 A s p-i-n photodetectors at room temperature.

Fig. 8
Fig. 8

(Color online) Schematic of the PC guided resonance sensor with microfluidics. Analyte detection is obtained by measuring a change in the local index of refraction due to captured molecules on the biosensor surface.

Fig. 9
Fig. 9

(Color online) Reflected power (arbitrary units) versus wavelength for a PC nanosensor. Simulated finite-difference time domain (FDTD) and experimental resonance peaks. Inset, SEM of the PC structure, period = 500 n m , hole radius = 100 n m .

Fig. 10
Fig. 10

(Color online) Illustration of in vivo continuous monitoring of fluorescence from a functional biomarker inside a tumor. Integrated sensor module is located in the vicinity of the tumor.

Fig. 11
Fig. 11

Photographs of integrated sensors with overcoated dielectric emission filter (a) before and (b) after lift-off of resist and filter layers from areas outside sensor active regions. Scale bar is 100 μ m . (c) Transmission spectra of a thermally evaporated emission filter over a glass test slide. Experimental results are in good agreement with theoretical predictions.

Tables (1)

Tables Icon

Table 1 IOS Levels for Selected Neurological Phenomena

Metrics