Abstract

We used continuum generated in an 8.5  cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12μm. The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004).
    [CrossRef] [PubMed]
  2. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon," Appl. Phys. Lett. 86, 133901-3 (2005).
    [CrossRef]
  3. B. E. Applegate, C. Yang, A. M. Rollins, and J. A. Izatt, "Polarization-resolved second-harmonic-generation optical coherence tomography in collagen," Opt. Lett. 29, 2252-2254 (2004).
    [CrossRef] [PubMed]
  4. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Spectral domain second-harmonic optical coherence tomography," Opt. Lett. 30, 2391-2393 (2005).
    [CrossRef] [PubMed]
  5. C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, "Nonlinear optical contrast enhancement for optical coherence tomography," Opt. Express 12, 331-341 (2004).
    [CrossRef] [PubMed]
  6. J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "Frequency domain second harmonic optical coherence tomography," Proc. SPIE 6079, 607901-6 (2006).
  7. I. Freund and M. Deutsch, "Second-harmonic microscopy of biological tissue," Opt. Lett. 11, 94-96 (1986).
    [CrossRef] [PubMed]
  8. B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000).
    [CrossRef]
  9. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1369-1377 (2003).
    [CrossRef]
  10. S. Yazdanfar, L. H. Laiho, and P. T. C. So, "Interferometric second harmonic generation microscopy," Opt. Express 12, 2739-2745 (2004).
    [CrossRef] [PubMed]
  11. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
    [CrossRef]
  12. R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
    [CrossRef]
  13. J. Mertz and L. Moreausx, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
    [CrossRef]
  14. L. Moreaux, O. Sandre, and L. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am. B 17, 1685-1694 (2000).
    [CrossRef]
  15. H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005).
    [CrossRef] [PubMed]
  16. A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
    [CrossRef]
  17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  18. R. Leitgeb, C. K. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  19. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, "Quantitative second harmonic generation microscopy in collagen," Appl. Opt. 42, 5209-5219 (2003).
    [CrossRef] [PubMed]
  20. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003).
    [CrossRef]
  21. M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express 13, 5791-5797 (2005).
    [CrossRef] [PubMed]

2006

J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "Frequency domain second harmonic optical coherence tomography," Proc. SPIE 6079, 607901-6 (2006).

2005

2004

2003

R. Leitgeb, C. K. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, "Quantitative second harmonic generation microscopy in collagen," Appl. Opt. 42, 5209-5219 (2003).
[CrossRef] [PubMed]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

2002

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

2001

J. Mertz and L. Moreausx, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
[CrossRef]

2000

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000).
[CrossRef]

L. Moreaux, O. Sandre, and L. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am. B 17, 1685-1694 (2000).
[CrossRef]

1996

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

1986

Applegate, B. E.

Bille, J. F.

Boppart, S. A.

Bredfeldt, J. S.

Campagnola, P. J.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Celliers, P. M.

Chen, Z.

J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "Frequency domain second harmonic optical coherence tomography," Proc. SPIE 6079, 607901-6 (2006).

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon," Appl. Phys. Lett. 86, 133901-3 (2005).
[CrossRef]

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004).
[CrossRef] [PubMed]

Clark, H. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003).
[CrossRef]

Da Silva, L. B.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000).
[CrossRef]

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Deutsch, M.

Eichler, J.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000).
[CrossRef]

Feit, M. D.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Fercher, A.

Freund, I.

Giese, G.

Glinsky, M. E.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Han, M.

Hitzenberger, C. K.

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Huang, Y. C.

Izatt, J. A.

Jiang, Y.

J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "Frequency domain second harmonic optical coherence tomography," Proc. SPIE 6079, 607901-6 (2006).

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon," Appl. Phys. Lett. 86, 133901-3 (2005).
[CrossRef]

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004).
[CrossRef] [PubMed]

Kim, B. M.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000).
[CrossRef]

Laiho, L. H.

Leitgeb, R.

Lewis, A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003).
[CrossRef]

Lim, H.

Loew, L. M.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003).
[CrossRef]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Mammini, B. M.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Marks, D. L.

Mertz, J.

J. Mertz and L. Moreausx, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
[CrossRef]

Mertz, L.

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Moreausx, L.

J. Mertz and L. Moreausx, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
[CrossRef]

Moreaux, L.

Oraevsky, A. A.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Perry, M. D.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Reiser, K. M.

P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, "Quantitative second harmonic generation microscopy in collagen," Appl. Opt. 42, 5209-5219 (2003).
[CrossRef] [PubMed]

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000).
[CrossRef]

Rollins, A. M.

Rubenchik, A. M.

P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, "Quantitative second harmonic generation microscopy in collagen," Appl. Opt. 42, 5209-5219 (2003).
[CrossRef] [PubMed]

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000).
[CrossRef]

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Sandre, O.

Sarunic, M. V.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Small, W.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

So, P. T. C.

Stoller, P.

Stuart, B. C.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Su, J.

J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "Frequency domain second harmonic optical coherence tomography," Proc. SPIE 6079, 607901-6 (2006).

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Tomov, I.

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon," Appl. Phys. Lett. 86, 133901-3 (2005).
[CrossRef]

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004).
[CrossRef] [PubMed]

Tomov, I. V.

J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "Frequency domain second harmonic optical coherence tomography," Proc. SPIE 6079, 607901-6 (2006).

Vinegoni, C.

Wang, Y.

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

Wise, F. W.

Yang, C.

Yazdanfar, S.

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon," Appl. Phys. Lett. 86, 133901-3 (2005).
[CrossRef]

Biophys. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Laser Surg. Med.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000).
[CrossRef]

Nature Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003).
[CrossRef]

Opt. Commun.

J. Mertz and L. Moreausx, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "Frequency domain second harmonic optical coherence tomography," Proc. SPIE 6079, 607901-6 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Schematic of the FD SH-OCT experimental system. FSL, femtosecond fiber laser; HWP, half-wave plate; DM, dichroic mirror; NLC, nonlinear crystal; OBJ, objective; BS, beam splitter; CF, color filter.

Fig. 2
Fig. 2

(Color online) Relationship between fiber length (Corning HI 780) and output spectra bandwidth. Without fiber continuum generation, the corresponding SH resolution is 30 μ m . A 1 m long fiber generates continuum with corresponding SH resolution of 8 μ m ; however, the continuum pulse duration broadens to 4   ps . Experimentally, the pulse duration was measured by an autocorrelator.

Fig. 3
Fig. 3

(Color online) Fish scale OCT and SH-OCT images. On the left-hand side is the fish scale OCT image; on the right-hand side, the SH-OCT image is shown. The length of both images is 3   mm , and the depth of the fundamental image is 0.46   mm , and the depth of the SH image is 0.27   mm . The acquisition time for the SH-OCT image was 10   min .

Fig. 4
Fig. 4

(Color online) Pig leg tendon OCT and SH-OCT images. On the left-hand side is the pig leg tendon OCT image; on the right-hand side, the SH-OCT image is shown. The length of both images is 1.5   mm , and the depth of the fundamental image is 0.47   mm , and the depth of the SH image is 0.27   mm . The acquisition time for the SH-OCT image was 5   min .

Fig. 5
Fig. 5

FD SH-OCT images of fish scales and rabbit eye sclera showing polarization anisotropy. Polarization of the fundamental and second harmonic radiation are (a) fish scales, perpendicular; (b) fish scales, parallel; (c) fish scales, overlay of both SH polarizations; (d) rabbit eye sclera, perpendicular; (e) rabbit eye sclera, parallel; (f) rabbit eye sclera, overlay of both SH polarizations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β = ( I par I perp ) / ( I par + 2 I perp ) ,

Metrics