Abstract

We outline a computationally efficient image correction algorithm, which we have applied to diffuse optical tomography (DOT) image time series derived from a magnetic resonance imaging (MRI)-based brain model. Results show that the algorithm increases spatial resolution, decreases spatial bias, and only modestly reduces temporal accuracy for noise levels typically seen in experiment, and produces results comparable to image reconstructions that incorporate information from MRI priors. We demonstrate that this algorithm has robust performance in the presence of noise, background heterogeneity, irregular external and internal boundaries, and error in the initial guess. However, the algorithm introduces artifacts when the absorption and scattering coefficients of the reference medium are overestimated—a situation that is easily avoided in practice. The considered algorithm offers a practical approach to improving the quality of images from time-series DOT, even without the use of MRI priors.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription