Abstract

The effect of the probe arrangement on the reproducibility of topographic images of the concentration changes in oxygenated hemoglobin and deoxygenated hemoglobin is evaluated by a virtual head phantom. A virtual head phantom consists of five types of tissue the 3D structure of which is based on a magnetic resonance imaging scan of an adult head. Localized and broadened brain activation is assumed in a virtual head phantom. The topographic images are obtained from the reflectance detected by the standard probe arrangement and the double-density probe arrangement. The uneven thickness of the superficial layer, which cannot be evaluated by the previous slab model, affects the distribution of measured activation in the topographic image, and this reduces the position reproducibility of near-infrared (NIR) topography with the standard probe arrangement. The overlapping measurements by the double-density probe arrangement can improve the reproducibility of the image obtained by NIR topography.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
    [CrossRef] [PubMed]
  2. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
    [CrossRef] [PubMed]
  3. W. N. J. M. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp. Brain Res. 129, 457-461 (1999).
    [CrossRef] [PubMed]
  4. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003).
    [CrossRef] [PubMed]
  5. M. J. Herrmann, A. C. Ehlis, A. Wagener, C. P. Jacob, and A. J. Fallgatter, "Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task," Neuropsychologia 43, 1713-1720 (2005).
    [CrossRef] [PubMed]
  6. E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
    [CrossRef] [PubMed]
  7. K. Matsuo, T. Kato, M. Fukuda, and N. Kato, "Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy," J. Neuropsychiatry Clin. Neurosci. 12, 465-471 (2000).
    [CrossRef] [PubMed]
  8. I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
    [CrossRef] [PubMed]
  9. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
    [CrossRef] [PubMed]
  10. T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
    [CrossRef] [PubMed]
  11. T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
    [CrossRef]
  12. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, S275-S288 (2004).
    [CrossRef] [PubMed]
  13. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004).
    [CrossRef] [PubMed]
  14. H. Kawaguchi, T. Hayashi, T. Kato, and E. Okada, "Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography," Phys. Med. Biol. 49, 2753-2765 (2004).
    [CrossRef] [PubMed]
  15. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, "Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256-258 (2004).
    [CrossRef] [PubMed]
  16. H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
    [CrossRef]
  17. Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003).
    [CrossRef] [PubMed]
  18. D. A. Boas and A. M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005).
    [CrossRef] [PubMed]
  19. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
    [CrossRef] [PubMed]
  20. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503-510 (1993).
    [CrossRef] [PubMed]
  21. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
    [CrossRef] [PubMed]
  22. P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE 1888, 454-465 (1993).
    [CrossRef]
  23. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
    [CrossRef] [PubMed]
  24. M. Keijzer, W. M. Star, and P. R. M. Storchi, "Optical diffusion in layered media," Appl. Opt. 27, 1820-1824 (1988).
    [CrossRef] [PubMed]
  25. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
    [CrossRef] [PubMed]
  26. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with nonscattering regions," Phys. Med. Biol. 41, 767-783 (1996).
    [CrossRef] [PubMed]
  27. T. Koyama, A. Iwasaki, Y. Ogoshi, and E. Okada, "Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory," Appl. Opt. 44, 2094-2103 (2005).
    [CrossRef] [PubMed]
  28. S. R. Arridge and M. Schweiger, "Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method," Appl. Opt. 34, 2683-2687 (1995).
    [CrossRef] [PubMed]
  29. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of the light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
    [CrossRef] [PubMed]
  30. V. Tuchin, in Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, D.C. O'Shea, ed. (SPIE, 2000).
  31. A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imaging 18, 262-271 (1999).
    [CrossRef] [PubMed]
  32. M. Firbank, E. Okada, and D. T. Delpy, "A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses," Neuroimage 8, 69-78 (1998).
    [CrossRef] [PubMed]
  33. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000).
    [CrossRef]
  34. T. Hayashi and E. Okada, "Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low scattering region," Appl. Opt. 42, 2888-2896 (2003).
    [CrossRef] [PubMed]
  35. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
    [CrossRef] [PubMed]
  36. M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
    [CrossRef] [PubMed]

2006 (1)

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

2005 (3)

2004 (5)

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, S275-S288 (2004).
[CrossRef] [PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004).
[CrossRef] [PubMed]

H. Kawaguchi, T. Hayashi, T. Kato, and E. Okada, "Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography," Phys. Med. Biol. 49, 2753-2765 (2004).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, "Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256-258 (2004).
[CrossRef] [PubMed]

2003 (7)

Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003).
[CrossRef] [PubMed]

T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
[CrossRef]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003).
[CrossRef] [PubMed]

T. Hayashi and E. Okada, "Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low scattering region," Appl. Opt. 42, 2888-2896 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
[CrossRef] [PubMed]

2002 (2)

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

2001 (1)

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

2000 (3)

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
[CrossRef] [PubMed]

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, "Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy," J. Neuropsychiatry Clin. Neurosci. 12, 465-471 (2000).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000).
[CrossRef]

1999 (2)

A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imaging 18, 262-271 (1999).
[CrossRef] [PubMed]

W. N. J. M. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp. Brain Res. 129, 457-461 (1999).
[CrossRef] [PubMed]

1998 (3)

M. Firbank, E. Okada, and D. T. Delpy, "A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses," Neuroimage 8, 69-78 (1998).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

1996 (1)

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with nonscattering regions," Phys. Med. Biol. 41, 767-783 (1996).
[CrossRef] [PubMed]

1995 (3)

S. R. Arridge and M. Schweiger, "Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method," Appl. Opt. 34, 2683-2687 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of the light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

1993 (3)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503-510 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

1988 (1)

Ajichi, Y.

Alcouffe, R. E.

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

Arridge, S. R.

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000).
[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with nonscattering regions," Phys. Med. Biol. 41, 767-783 (1996).
[CrossRef] [PubMed]

S. R. Arridge and M. Schweiger, "Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method," Appl. Opt. 34, 2683-2687 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of the light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Barbour, R. L.

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas and A. M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, "Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256-258 (2004).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, S275-S288 (2004).
[CrossRef] [PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Chen, K.

Cheng, X.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Colier, W. N. J. M.

W. N. J. M. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp. Brain Res. 129, 457-461 (1999).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

Culver, J. P.

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, "Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256-258 (2004).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003).
[CrossRef] [PubMed]

Dale, A. M.

D. A. Boas and A. M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, S275-S288 (2004).
[CrossRef] [PubMed]

Dan, H.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Dan, I.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Dehghani, H.

Delpy, D. T.

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000).
[CrossRef]

M. Firbank, E. Okada, and D. T. Delpy, "A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses," Neuroimage 8, 69-78 (1998).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with nonscattering regions," Phys. Med. Biol. 41, 767-783 (1996).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of the light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503-510 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Eda, H.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

Ehlis, A. C.

M. J. Herrmann, A. C. Ehlis, A. Wagener, C. P. Jacob, and A. J. Fallgatter, "Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task," Neuropsychologia 43, 1713-1720 (2005).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503-510 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Fallgatter, A. J.

M. J. Herrmann, A. C. Ehlis, A. Wagener, C. P. Jacob, and A. J. Fallgatter, "Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task," Neuropsychologia 43, 1713-1720 (2005).
[CrossRef] [PubMed]

Fantini, S.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003).
[CrossRef] [PubMed]

Ferrari, M.

W. N. J. M. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp. Brain Res. 129, 457-461 (1999).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, E. Okada, and D. T. Delpy, "A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses," Neuroimage 8, 69-78 (1998).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with nonscattering regions," Phys. Med. Biol. 41, 767-783 (1996).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503-510 (1993).
[CrossRef] [PubMed]

Franceschini, M. A.

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, S275-S288 (2004).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003).
[CrossRef] [PubMed]

Fuchino, Y.

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

Fukuda, M.

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, "Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy," J. Neuropsychiatry Clin. Neurosci. 12, 465-471 (2000).
[CrossRef] [PubMed]

Fukui, Y.

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Grebert, D.

Hanson, K. M.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imaging 18, 262-271 (1999).
[CrossRef] [PubMed]

Hayashi, T.

H. Kawaguchi, T. Hayashi, T. Kato, and E. Okada, "Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography," Phys. Med. Biol. 49, 2753-2765 (2004).
[CrossRef] [PubMed]

T. Hayashi and E. Okada, "Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low scattering region," Appl. Opt. 42, 2888-2896 (2003).
[CrossRef] [PubMed]

Herrmann, M. J.

M. J. Herrmann, A. C. Ehlis, A. Wagener, C. P. Jacob, and A. J. Fallgatter, "Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task," Neuropsychologia 43, 1713-1720 (2005).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imaging 18, 262-271 (1999).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of the light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503-510 (1993).
[CrossRef] [PubMed]

Ichikawa, N.

Isobe, S.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Ito, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Iwasaki, A.

Jacob, C. P.

M. J. Herrmann, A. C. Ehlis, A. Wagener, C. P. Jacob, and A. J. Fallgatter, "Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task," Neuropsychologia 43, 1713-1720 (2005).
[CrossRef] [PubMed]

Kadoya, T.

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

Kato, N.

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, "Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy," J. Neuropsychiatry Clin. Neurosci. 12, 465-471 (2000).
[CrossRef] [PubMed]

Kato, T.

H. Kawaguchi, T. Hayashi, T. Kato, and E. Okada, "Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography," Phys. Med. Biol. 49, 2753-2765 (2004).
[CrossRef] [PubMed]

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, "Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy," J. Neuropsychiatry Clin. Neurosci. 12, 465-471 (2000).
[CrossRef] [PubMed]

Kawaguchi, F.

T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
[CrossRef]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
[CrossRef] [PubMed]

Kawaguchi, H.

H. Kawaguchi, T. Hayashi, T. Kato, and E. Okada, "Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography," Phys. Med. Biol. 49, 2753-2765 (2004).
[CrossRef] [PubMed]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

Keijzer, M.

Kiguchi, M.

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

Klose, A. D.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imaging 18, 262-271 (1999).
[CrossRef] [PubMed]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

Kohno, S.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Kohyama, K.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Koizumi, H.

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
[CrossRef]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Konishi, I.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

Koyama, T.

Kubota, K.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

Li, A.

Maki, A.

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
[CrossRef]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Marota, J. J. A.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Matsuo, K.

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, "Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy," J. Neuropsychiatry Clin. Neurosci. 12, 465-471 (2000).
[CrossRef] [PubMed]

Mayanagi, Y.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Miller, E. L.

Miyai, I.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

Obata, A.

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

Oda, I.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

Oeseburg, B.

W. N. J. M. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp. Brain Res. 129, 457-461 (1999).
[CrossRef] [PubMed]

Ogoshi, Y.

Okada, E.

T. Koyama, A. Iwasaki, Y. Ogoshi, and E. Okada, "Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory," Appl. Opt. 44, 2094-2103 (2005).
[CrossRef] [PubMed]

H. Kawaguchi, T. Hayashi, T. Kato, and E. Okada, "Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography," Phys. Med. Biol. 49, 2753-2765 (2004).
[CrossRef] [PubMed]

Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
[CrossRef] [PubMed]

T. Hayashi and E. Okada, "Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low scattering region," Appl. Opt. 42, 2888-2896 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
[CrossRef] [PubMed]

T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
[CrossRef]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

M. Firbank, E. Okada, and D. T. Delpy, "A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses," Neuroimage 8, 69-78 (1998).
[CrossRef] [PubMed]

Okamoto, M.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Quaresima, V.

W. N. J. M. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp. Brain Res. 129, 457-461 (1999).
[CrossRef] [PubMed]

Sakamoto, K.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Sato, H.

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

Schweiger, M.

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000).
[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with nonscattering regions," Phys. Med. Biol. 41, 767-783 (1996).
[CrossRef] [PubMed]

S. R. Arridge and M. Schweiger, "Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method," Appl. Opt. 34, 2683-2687 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of the light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Simizu, K.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

Star, W. M.

Storchi, P. R. M.

Strangman, G.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Suzuki, T.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

Takeo, K.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Tanikawa, Y.

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

Thompson, J. H.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003).
[CrossRef] [PubMed]

Tuchin, V.

V. Tuchin, in Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, D.C. O'Shea, ed. (SPIE, 2000).

van der Zee, P.

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Wagener, A.

M. J. Herrmann, A. C. Ehlis, A. Wagener, C. P. Jacob, and A. J. Fallgatter, "Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task," Neuropsychologia 43, 1713-1720 (2005).
[CrossRef] [PubMed]

Watanabe, E.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Yagura, H.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

Yamada, Y.

T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
[CrossRef]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

Yamamoto, T.

T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
[CrossRef]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

Yamashita, Y.

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Yoro, T.

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

Zhang, Q.

Ann. Neurol. (1)

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188-194 (2002).
[CrossRef] [PubMed]

Appl. Opt. (9)

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003).
[CrossRef] [PubMed]

D. A. Boas and A. M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
[CrossRef] [PubMed]

T. Koyama, A. Iwasaki, Y. Ogoshi, and E. Okada, "Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory," Appl. Opt. 44, 2094-2103 (2005).
[CrossRef] [PubMed]

S. R. Arridge and M. Schweiger, "Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method," Appl. Opt. 34, 2683-2687 (1995).
[CrossRef] [PubMed]

M. Keijzer, W. M. Star, and P. R. M. Storchi, "Optical diffusion in layered media," Appl. Opt. 27, 1820-1824 (1988).
[CrossRef] [PubMed]

T. Hayashi and E. Okada, "Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low scattering region," Appl. Opt. 42, 2888-2896 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

W. N. J. M. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp. Brain Res. 129, 457-461 (1999).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imaging 18, 262-271 (1999).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, "Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months," J. Biomed. Opt. 11, 14-21 (2006).
[CrossRef]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, "Noninvasive cerebral blood volume measurement during seizures using multichannel near-infrared spectroscopic topography," J. Biomed. Opt. 5, 287-290 (2000).
[CrossRef] [PubMed]

J. Neuropsychiatry Clin. Neurosci. (1)

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, "Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy," J. Neuropsychiatry Clin. Neurosci. 12, 465-471 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (3)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of the light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Neuroimage (4)

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near-infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, S275-S288 (2004).
[CrossRef] [PubMed]

M. Firbank, E. Okada, and D. T. Delpy, "A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses," Neuroimage 8, 69-78 (1998).
[CrossRef] [PubMed]

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Simizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping," Neuroimage 21, 99-111 (2004).
[CrossRef] [PubMed]

Neuropsychologia (1)

M. J. Herrmann, A. C. Ehlis, A. Wagener, C. P. Jacob, and A. J. Fallgatter, "Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task," Neuropsychologia 43, 1713-1720 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (6)

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with nonscattering regions," Phys. Med. Biol. 41, 767-783 (1996).
[CrossRef] [PubMed]

H. Kawaguchi, T. Hayashi, T. Kato, and E. Okada, "Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography," Phys. Med. Biol. 49, 2753-2765 (2004).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503-510 (1993).
[CrossRef] [PubMed]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi, "Arranging optical fibres for the spatial resolution improvement of topographical images," Phys. Med. Biol. 47, 3429-3440 (2002).
[CrossRef] [PubMed]

Proc. SPIE (2)

T. Yamamoto, E. Okada, F. Kawaguchi, A. Maki, Y. Yamada, and H. Koizumi, "Optical fiber arrangement of optical topography for spatial resolution improvement," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 487-496 (2003).
[CrossRef]

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Psychophysiology (1)

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003).
[CrossRef] [PubMed]

Other (1)

V. Tuchin, in Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, D.C. O'Shea, ed. (SPIE, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Magnetic resonance image of (a) an axial slice of an adult head and (b) the corresponding segmented image.

Fig. 2
Fig. 2

Three-dimensional segmented geometry of a virtual head phantom for NIR topography.

Fig. 3
Fig. 3

(a1) (b1) Probe arrangements of NIR topography; (a2) (b2) corresponding measurement points; and (c), positions of the probe arrangements. (a) Standard probe arrangement, (b) double-density probe arrangement. The open squares, closed squares, and open circles represent the source probes, the detector probes, and the measurement points, respectively.

Fig. 4
Fig. 4

(Color online) Topographic images of the concentration changes in (1) oxy-Hb and (2) deoxy-Hb calculated from the changes in intensities detected by the standard probe arrangement at (a) position A, (b) position B, and (c) position C on the virtual head phantom. The size of the activated region was approximately 10   mm (localized activation). The dotted curve and the solid curve indicate the half-maximum of the actual concentration changes and the measured concentration changes, respectively.

Fig. 5
Fig. 5

(Color online) Topographic images of the concentration changes in (1) oxy-Hb and (2) deoxy-Hb calculated from the changes in intensities detected by the standard probe arrangement at (a) position A, (b) position B, and (c) position C on the virtual head phantom. The size of the activated region was approximately 30   mm (broadened activation). The dotted curve and the solid curve indicate the half-maximum of the actual concentration changes and the measured concentration changes, respectively.

Fig. 6
Fig. 6

(Color online) Topographic images of the concentration changes in oxy-Hb calculated from the change in intensities detected by the standard probe arrangement at (a) position A, (b) position B, and (c) position C on the slab model. The size of the activated region was (1) 10   mm (localized activation) and (2) 30   mm (broadened activation). The dotted curve and the solid curve indicate the half-maximum of the actual concentration changes and the measured concentration changes, respectively.

Fig. 7
Fig. 7

(Color online) Topographic images of the concentration changes in (1) oxy-Hb and (2) deoxy-Hb calculated from the changes in intensities detected by the double-density probe arrangement at (a) position A, (b) position B, and (c) position C on the virtual head phantom. The size of the activated region was approximately 10   mm (localized activation). The dotted curve and the solid curve indicate the half-maximum of the actual concentration changes and the measured concentration changes, respectively.

Fig. 8
Fig. 8

(Color online) Topographic images of the concentration changes in (1) oxy-Hb and (2) deoxy-Hb calculated from the changes in intensities detected by the double-density probe arrangement at (a) position A, (b) position B, and (c) position C on the virtual head phantom. The size of the activated region was approximately 30 mm (broadened activation). The dotted curve and the solid curve indicate the half-maximum of the actual concentration changes and the measured concentration changes, respectively.

Fig. 9
Fig. 9

(Color online) Topographic images of the concentration changes in (1) oxy-Hb and (2) deoxy-Hb calculated from the changes in intensities detected by the double-density probe arrangement in the case where the greatest displacement of the measured activated region is observed. The size of the activated region was approximately (a) 10   mm (localized activation) and (b) 30   mm (broadened activation). The dotted curve and the solid curve indicate the half-maximum of the actual concentration changes and the measured concentration changes, respectively.

Fig. 10
Fig. 10

(Color online) Distribution of the thickness of the superficial tissue (scalp and skull).

Fig. 11
Fig. 11

(Color online) Sensitivity distribution of the probes that are the closest to the center of the activated region for (a) probe position A, (b) probe position B, and (c) probe position C.

Tables (3)

Tables Icon

Table 1 Optical Properties of Each Region in a Virtual Head Phantom a

Tables Icon

Table 2 Displacement of the Gravity Point of the Measured Activated Region in the Topographic Image from the Center of the Actual Activated Region in the Virtual Head Phantom

Tables Icon

Table 3 Ratio of the Area of the Measured Activated Region in the Topographic Image to That of the Actual Activated Region in the Virtual Head Phantom

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

κ ( r ) Φ ( ξ ; r ) + μ a ( r ) Φ ( ξ ; r ) = q 0 ( ξ ) ,
κ ( r ) = 1 3 [ μ a ( r ) + μ s ( r ) ] ,
I o u t ( ξ ,   ζ ) = κ ( ξ ) n ^ Φ ( ξ ,   ζ ) ,
L gray ( ξ ,   ζ ) = Δ OD ( ξ ,   ζ ,   μ a ,gray ,   Δ μ a ,gray ) Δ μ a ,gray = ln I baseline ( ξ ,   ζ ,   μ a ,gray ) / I out ( ξ ,   ζ ,   μ a ,gray + Δ μ a ,gray ) Δ μ a ,gray .
SSP ( ξ ,   ζ ; r ) = OD ( ξ ,   ζ ; r ) μ a ( r ) = L voxel ( ξ , ζ ; r ) .
J ( ξ ,   ζ ; r ) = Φ ( ξ ; r ) Φ a d j ( ζ ; r ) ,
SSP ( ξ ,   ζ ;   r ) = L gray ( ξ ,   ζ ) r gray J ( ξ ,   ζ ;   r ) J ( ξ ,   ζ ;   r ) .
Δ μ a ( λ , r ) = ε o x y ( λ ) Δ c o x y ( r ) + ε d e o x y ( λ ) Δ c d e o x y ( r ) ,
Δ OD ( λ , ξ , ζ ) = SSP ( λ , ξ , ζ ; r ) T Δ μ a ( λ , r ) .
Δ c o x y * ( ξ ,   ζ ) l = ε d e o x y ( 830 ) Δ OD ( 780,   ξ ,   ζ ) ε d e o x y ( 780 ) Δ OD ( 830,   ξ ,   ζ ) ε o x y ( 780 ) ε d e o x y ( 830 ) ε o x y ( 830 ) ε d e o x y ( 780 ) ,
Δ c d e o x y * ( ξ ,   ζ ) l = ε o x y ( 780 ) Δ OD ( 830,   ξ ,   ζ ) ε o x y ( 830 ) Δ OD ( 780,   ξ ,   ζ ) ε o x y ( 780 ) ε d e o x y ( 830 ) ε o x y ( 830 ) ε d e o x y ( 780 ) ,

Metrics