Abstract

A key issue in the practical application of fluorescence imaging is the presence of a background signal detected during data acquisition when no target fluorescent material is present. Regardless of the technology employed, background signals cannot be completely eliminated, which limits the detection sensitivity of fluorescence imaging systems, especially for in vivo applications. We present a methodology to characterize the sensitivity of fluorescence imaging devices by taking the background effect into account through the fluorescent signal-to-background ratio (SBR). In an initial application of the methodology, tissuelike liquid phantoms with Cy5.5 fluorescent inclusions were investigated experimentally over a wide range of varying parameters, such as tissue absorption coefficient, scattering coefficient, fluorophore concentration, and inclusion location. By defining detectable and quantifiable SBR thresholds, empirical relations are established, and the sensitivity performance of Advanced Research Technologies's eXplore Optix using Cy5.5 is characterized.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
    [CrossRef]
  2. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models," Mol. Imaging 3, 9-23 (2004).
    [CrossRef] [PubMed]
  3. K. R. Diamond, P. P. Malysz, J. E. Hayward, and M. S. Patterson, "Quantification of fluorophore concentration in vivo using two simple fluorescence-based measurement techniques," J. Biomed. Opt. 10, 024007 (2005).
    [CrossRef] [PubMed]
  4. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
    [CrossRef] [PubMed]
  5. E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, "Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography," J. Biomed. Opt. 10, 044019 (2005).
    [CrossRef] [PubMed]
  6. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
    [CrossRef] [PubMed]
  7. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy," Appl. Opt. 34, 3425-3430 (1995).
    [CrossRef] [PubMed]
  8. R. Cubeddu, A. Pifferi, P. Taroni, and G. Valentini, "Tumor detection in mice by measurement of fluorescence decay time matrics," Opt. Lett. 20, 2553-2555 (1995).
    [CrossRef] [PubMed]
  9. B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).
    [CrossRef]
  10. P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meetings on CD-ROM (Optical Society of America, 2004), paper WD2.
  11. D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).
    [CrossRef] [PubMed]
  12. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
    [CrossRef] [PubMed]
  13. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
    [CrossRef] [PubMed]
  14. R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, "Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration," Appl. Opt. 38, 4930-4938 (1999).
    [CrossRef]
  15. H. B. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998).
    [CrossRef]
  16. A. D. Klose and A. H. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Express , 28, 1019-1021 (2003).
  17. I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, and A. Gandjbakhche, "In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers," Appl. Opt. 42, 3073-3080 (2003).
    [CrossRef] [PubMed]
  18. K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: Comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
    [CrossRef] [PubMed]
  19. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical tomography," Appl. Opt. 42, 3081-3094 (2003).
    [CrossRef] [PubMed]
  20. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurement," IEEE Trans. Med. Imaging 23, 492-500 (2004).
    [CrossRef] [PubMed]
  21. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
    [CrossRef] [PubMed]
  22. D. Hattery, V. Chernomordik, I. Gannot, M. Loew, and A. Gandjbakhche, "Fluorescence measurement of localized, deeply embedded physiological processes," in Medical Imaging, C. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377-382 (2000).
    [CrossRef]
  23. R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
    [CrossRef] [PubMed]
  24. D. J. Hawrysz and E. M. Sevick-Muraca, "Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents," Neoplasia 2, 388-417 (2000).
    [CrossRef]
  25. J. Frechette, Y. Painchaud, and C. Gilbert, "Matching fluid fabrication and characterization," INO-Advanced Research Technologies internal report, INO 98-4055MF (December, 1998).
  26. M. L. Vernon, J. Frechette, Y. Painchaud, S. Caron, and P. Beaudry, "Fabrication and characterization of a solid polyurethane phantom for optical imaging through scattering media," Appl. Opt. 38, 4247-4251 (1999).
    [CrossRef]

2005 (5)

K. R. Diamond, P. P. Malysz, J. E. Hayward, and M. S. Patterson, "Quantification of fluorophore concentration in vivo using two simple fluorescence-based measurement techniques," J. Biomed. Opt. 10, 024007 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, "Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography," J. Biomed. Opt. 10, 044019 (2005).
[CrossRef] [PubMed]

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

2004 (3)

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurement," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models," Mol. Imaging 3, 9-23 (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (1)

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: Comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

D. Hattery, V. Chernomordik, I. Gannot, M. Loew, and A. Gandjbakhche, "Fluorescence measurement of localized, deeply embedded physiological processes," in Medical Imaging, C. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377-382 (2000).
[CrossRef]

D. J. Hawrysz and E. M. Sevick-Muraca, "Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents," Neoplasia 2, 388-417 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

1996 (1)

1995 (2)

1994 (1)

Achilefu, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Alfano, R. R.

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

Beaudry, P.

Belenkov, A.

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meetings on CD-ROM (Optical Society of America, 2004), paper WD2.

Bloch, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Boas, D. A.

Bouman, C. A.

Caron, S.

Chance, B.

Chernomordik, V.

I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, and A. Gandjbakhche, "In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers," Appl. Opt. 42, 3073-3080 (2003).
[CrossRef] [PubMed]

D. Hattery, V. Chernomordik, I. Gannot, M. Loew, and A. Gandjbakhche, "Fluorescence measurement of localized, deeply embedded physiological processes," in Medical Imaging, C. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377-382 (2000).
[CrossRef]

Cubeddu, R.

Das, B. B.

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

Dasari, R. R.

Diamond, K. R.

K. R. Diamond, P. P. Malysz, J. E. Hayward, and M. S. Patterson, "Quantification of fluorophore concentration in vivo using two simple fluorescence-based measurement techniques," J. Biomed. Opt. 10, 024007 (2005).
[CrossRef] [PubMed]

Feld, M. S.

Frechette, J.

M. L. Vernon, J. Frechette, Y. Painchaud, S. Caron, and P. Beaudry, "Fabrication and characterization of a solid polyurethane phantom for optical imaging through scattering media," Appl. Opt. 38, 4247-4251 (1999).
[CrossRef]

J. Frechette, Y. Painchaud, and C. Gilbert, "Matching fluid fabrication and characterization," INO-Advanced Research Technologies internal report, INO 98-4055MF (December, 1998).

Gallant, P.

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meetings on CD-ROM (Optical Society of America, 2004), paper WD2.

Gandjbakhche, A.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, and A. Gandjbakhche, "In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers," Appl. Opt. 42, 3073-3080 (2003).
[CrossRef] [PubMed]

D. Hattery, V. Chernomordik, I. Gannot, M. Loew, and A. Gandjbakhche, "Fluorescence measurement of localized, deeply embedded physiological processes," in Medical Imaging, C. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377-382 (2000).
[CrossRef]

Gannot, G.

Gannot, I.

I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, and A. Gandjbakhche, "In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers," Appl. Opt. 42, 3073-3080 (2003).
[CrossRef] [PubMed]

D. Hattery, V. Chernomordik, I. Gannot, M. Loew, and A. Gandjbakhche, "Fluorescence measurement of localized, deeply embedded physiological processes," in Medical Imaging, C. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377-382 (2000).
[CrossRef]

Gao, M.

Garashi, A.

Gilbert, C.

J. Frechette, Y. Painchaud, and C. Gilbert, "Matching fluid fabrication and characterization," INO-Advanced Research Technologies internal report, INO 98-4055MF (December, 1998).

Graves, E. E.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, "Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography," J. Biomed. Opt. 10, 044019 (2005).
[CrossRef] [PubMed]

Hall, D.

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).
[CrossRef] [PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meetings on CD-ROM (Optical Society of America, 2004), paper WD2.

Hattery, D.

D. Hattery, V. Chernomordik, I. Gannot, M. Loew, and A. Gandjbakhche, "Fluorescence measurement of localized, deeply embedded physiological processes," in Medical Imaging, C. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377-382 (2000).
[CrossRef]

Hawrysz, D. J.

D. J. Hawrysz and E. M. Sevick-Muraca, "Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents," Neoplasia 2, 388-417 (2000).
[CrossRef]

Hayward, J. E.

K. R. Diamond, P. P. Malysz, J. E. Hayward, and M. S. Patterson, "Quantification of fluorophore concentration in vivo using two simple fluorescence-based measurement techniques," J. Biomed. Opt. 10, 024007 (2005).
[CrossRef] [PubMed]

Hielscher, A. H.

A. D. Klose and A. H. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Express , 28, 1019-1021 (2003).

Itzkan, I.

Jekic-McMullen, D.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models," Mol. Imaging 3, 9-23 (2004).
[CrossRef] [PubMed]

Jiang, H. B.

Klose, A. D.

A. D. Klose and A. H. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Express , 28, 1019-1021 (2003).

Lesage, F.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).
[CrossRef] [PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meetings on CD-ROM (Optical Society of America, 2004), paper WD2.

Lewis, G.

Li, X. D.

Liang, K.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Liu, F.

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

Loew, M.

D. Hattery, V. Chernomordik, I. Gannot, M. Loew, and A. Gandjbakhche, "Fluorescence measurement of localized, deeply embedded physiological processes," in Medical Imaging, C. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377-382 (2000).
[CrossRef]

Ma, G.

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).
[CrossRef] [PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meetings on CD-ROM (Optical Society of America, 2004), paper WD2.

Malysz, P. P.

K. R. Diamond, P. P. Malysz, J. E. Hayward, and M. S. Patterson, "Quantification of fluorophore concentration in vivo using two simple fluorescence-based measurement techniques," J. Biomed. Opt. 10, 024007 (2005).
[CrossRef] [PubMed]

Mayer, R. H.

McIntosh, L.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meetings on CD-ROM (Optical Society of America, 2004), paper WD2.

Millane, R. P.

Milstein, A. B.

Mycek, M.-A.

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: Comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, "Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography," J. Biomed. Opt. 10, 044019 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurement," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Oh, S.

O'Leary, M. A.

Painchaud, Y.

M. L. Vernon, J. Frechette, Y. Painchaud, S. Caron, and P. Beaudry, "Fabrication and characterization of a solid polyurethane phantom for optical imaging through scattering media," Appl. Opt. 38, 4247-4251 (1999).
[CrossRef]

J. Frechette, Y. Painchaud, and C. Gilbert, "Matching fluid fabrication and characterization," INO-Advanced Research Technologies internal report, INO 98-4055MF (December, 1998).

Patterson, M. S.

K. R. Diamond, P. P. Malysz, J. E. Hayward, and M. S. Patterson, "Quantification of fluorophore concentration in vivo using two simple fluorescence-based measurement techniques," J. Biomed. Opt. 10, 024007 (2005).
[CrossRef] [PubMed]

M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
[CrossRef] [PubMed]

Perelman, L.

Pifferi, A.

Pogue, B. W.

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: Comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
[CrossRef] [PubMed]

Reynolds, J. S.

Rice, B.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models," Mol. Imaging 3, 9-23 (2004).
[CrossRef] [PubMed]

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurement," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

Sambucetti, L.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models," Mol. Imaging 3, 9-23 (2004).
[CrossRef] [PubMed]

Schulz, R. B.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurement," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

D. J. Hawrysz and E. M. Sevick-Muraca, "Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents," Neoplasia 2, 388-417 (2000).
[CrossRef]

R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, "Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration," Appl. Opt. 38, 4930-4938 (1999).
[CrossRef]

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

Taroni, P.

Troy, T.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models," Mol. Imaging 3, 9-23 (2004).
[CrossRef] [PubMed]

Turner, G.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, "Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography," J. Biomed. Opt. 10, 044019 (2005).
[CrossRef] [PubMed]

Turner, G. M.

Valentini, G.

Vernon, M. L.

Vishwanath, K.

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: Comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

Wang, Y.

Webb, K. J.

Weissleder, R.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, "Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography," J. Biomed. Opt. 10, 044019 (2005).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Wu, J.

Yessayan, D.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, "Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography," J. Biomed. Opt. 10, 044019 (2005).
[CrossRef] [PubMed]

Yodh, A. G.

Zhang, Q.

Appl. Opt. (8)

M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
[CrossRef] [PubMed]

H. B. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998).
[CrossRef]

R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, "Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration," Appl. Opt. 38, 4930-4938 (1999).
[CrossRef]

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy," Appl. Opt. 34, 3425-3430 (1995).
[CrossRef] [PubMed]

M. L. Vernon, J. Frechette, Y. Painchaud, S. Caron, and P. Beaudry, "Fabrication and characterization of a solid polyurethane phantom for optical imaging through scattering media," Appl. Opt. 38, 4247-4251 (1999).
[CrossRef]

I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, and A. Gandjbakhche, "In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers," Appl. Opt. 42, 3073-3080 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurement," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, "Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography," J. Biomed. Opt. 10, 044019 (2005).
[CrossRef] [PubMed]

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

K. R. Diamond, P. P. Malysz, J. E. Hayward, and M. S. Patterson, "Quantification of fluorophore concentration in vivo using two simple fluorescence-based measurement techniques," J. Biomed. Opt. 10, 024007 (2005).
[CrossRef] [PubMed]

Mol. Imaging (1)

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models," Mol. Imaging 3, 9-23 (2004).
[CrossRef] [PubMed]

Nat. Med. (1)

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

Neoplasia (1)

D. J. Hawrysz and E. M. Sevick-Muraca, "Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents," Neoplasia 2, 388-417 (2000).
[CrossRef]

Opt. Express (1)

A. D. Klose and A. H. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Express , 28, 1019-1021 (2003).

Opt. Lett. (4)

Phys. Med. Biol. (1)

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: Comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. Hattery, V. Chernomordik, I. Gannot, M. Loew, and A. Gandjbakhche, "Fluorescence measurement of localized, deeply embedded physiological processes," in Medical Imaging, C. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377-382 (2000).
[CrossRef]

Rep. Prog. Phys. (1)

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

Other (2)

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meetings on CD-ROM (Optical Society of America, 2004), paper WD2.

J. Frechette, Y. Painchaud, and C. Gilbert, "Matching fluid fabrication and characterization," INO-Advanced Research Technologies internal report, INO 98-4055MF (December, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Schematic of the eXplore Optix optical chain. The excitation light originates from a pulsed diode laser (PDL), is reflected by several mirrors, and then travels through a neutral density attenuator wheel and an illumination lens before it reaches a sample on the translation table. The fluorescent light reaches a PMT through a telecentric-imaging relay.

Fig. 2
Fig. 2

(Color online) Typical fluorescent SBR of a 100   nM Cy5.5 inclusion versus its depth inside a liquid phantom with μ a = 0.03 mm 1 and varied μ s . The five curves from top to bottom correspond to μ s = 0.6 , 0.8, 1.0, 1.2, and 1.6 mm 1 .

Fig. 3
Fig. 3

(Color online) Definition of detectable SBR threshold. Two fluorescent images are plotted as surfaces with signal amplitude as surface height to address the distinguishability of fluorophore inclusion from the surrounding background. Upper panel, S B R = 0.08 , signal from inclusion is distinguishable from the surrounding background so it is detectable. Lower panel, S B R = 0.03 , signal from inclusion is buried in the surrounding background so it is beyond the system sensitivity limit.

Fig. 4
Fig. 4

(Color online) Definition of quantifiable SBR threshold. Plotted is the fitted fluorescent lifetime of Cy5.5 in the same solid inclusion over SBR from data acquired at various conditions. When SBR greater than or equal to 1 the extracted fluorescent lifetimes are consistent, as expected, so the signals are quantifiable. When the SBR is much smaller than one, the fitted lifetime is not reliable.

Fig. 5
Fig. 5

(Color online) Detectable and quantifiable depths of a 100   nM Cy5.5 inclusion versus medium scattering coefficient μ s when absorption coefficient μ a is kept at 0.03 mm 1 .

Fig. 6
Fig. 6

(Color online) Detectable and quantifiable depths of a 100   nM Cy5.5 inclusion versus medium absorption coefficient μ a when scattering coefficient μ s is kept at 0.8 mm 1 .

Fig. 7
Fig. 7

(Color online) Detectable and quantifiable depths of an inclusion versus fluorophore concentration, when medium optical properties μ a and μ s are fixed at 0.006 and 1.0 mm 1 .

Fig. 8
Fig. 8

(a) Detectable and (b) quantifiable depths in millimeters of a 100   nM Cy5.5 fluorescent inclusion over medium optical properties μ a and μ s .

Fig. 9
Fig. 9

(Color online) (a) Minimum detectable concentration in femtomolarity and (b) quantifiable concentration in nanometers of a Cy5.5 fluorescent inclusion at 4   mm depth inside a medium with optical properties μ a and μ s .

Tables (1)

Tables Icon

Table 1 Parameters Used in Experiment

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S raw ( t ) = 1 4 2 × 2 S raw ( x , y , t ) d x d y ,
B ( t ) = 1 n pixel ROI B ( x , y , t ) d x d y .
SBR = S fluo / B = ( S raw B ) / B .
d D = 4.1 ln ( μ s ) + 9.4 ,
d Q = 3.0 ln ( μ s ) + 6.3.
d D = 2.9 ln ( μ a ) + 0.4 ,
d Q = 1.5 ln ( μ a ) + 2.1.
d D = 1.5 ln ( c ) + 7.8 ,
d Q = 1.4 ln ( c ) + 2.8.
d D = 2.9 ln ( μ a ) 4.3 ln ( μ s ) 0.8 ,
d Q = 1.6 ln ( μ a ) 3.3 ln ( μ s ) 1.0.
d D = 3.1 ln ( μ a ) 4.1 ln ( μ s ) + 1.4 ln ( c ) 8.1 ,
d Q = 1.7 ln ( μ a ) 3.2 ln ( μ s ) + 1.4 ln ( c ) 5.9.

Metrics