Abstract

We study the effect of tissue anisotropy in optical tomography of neonates. A Monte Carlo method capable of modeling photon migration in an arbitrary 3D tissue model with spatially varying optical properties and tissue anisotropy is used for simulating measurements of neonates. Anatomical and diffusion tensor magnetic resonance imaging of neonates are used for creating the anatomical models. We find that tissue anisotropy affects the measured signal and the pattern of sensitivity in optical measurements.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "Application of the finite element method for the forward model in infrared absorption imaging," in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 97-108 (1992).
    [CrossRef]
  2. G. Marquez, L.-H. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998).
    [CrossRef]
  3. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
    [CrossRef] [PubMed]
  4. A. Kienle, F. K. Forster, R. Diebolder, and H. Hibst, "Light propagation in dentin: influence of microstructure on anisotropy," Phys. Med. Biol. 48, N7-N14 (2003).
    [CrossRef] [PubMed]
  5. J. Heino, S. Arridge, J. Sikora, and E. Somersalo, "Anisotropic effects in highly scattering media," Phys. Rev. E 68, 031908 (2003).
    [CrossRef]
  6. L. Dagdug, G. H. Weill, and A. H. Gandjbakhche, "Effects of anisotropic optical properties on photon migration in structured tissues," Phys. Med. Biol. 48, 1361-1370 (2003).
    [CrossRef] [PubMed]
  7. J. Heiskala, I. Nissilä, T. Neuvonen, S. Järvenpää, and E. Somersalo, "Modeling anisotropic light propagation in a realistic model of the human head," Appl. Opt. 44, 2049-2057 (2005).
    [CrossRef] [PubMed]
  8. R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
    [CrossRef] [PubMed]
  9. F. Schmidt, "Development of a time-resolved optical tomography system for neonatal brain imaging," Ph.D. dissertation (University of London, 1999).
  10. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE IS, 1989), Vol. 5, pp. 102-111.
  11. L. H. Wang, S. L. Jacques, and L.-Q. Zheng, "Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  12. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogenous media including the adult human head," Opt. Express 10, 159-170 (2002).
    [PubMed]
  13. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001).
    [CrossRef]
  14. J. Spanier and E. M. Gelbardm, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, 1969).
  15. Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method, J. Biomed. Opt. 9, 1002-1012 (2004).
    [CrossRef]
  16. General Electric Company, 3135 Easton Turnpike, Fairfield, Conn. 06828-0001.
  17. P. J. Basser and C. Pierpaoli, "Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI," J. Magn. Reson. Ser B 111, 209-219 (1996).
    [CrossRef]
  18. D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans. Med. Imaging 20, 1131-1139 (2001).
    [CrossRef] [PubMed]
  19. S. J. Kiebel, J. Ashburner, J. B. Poline, and K. J. Friston, "MRI and PET coregistration--a cross validation of statistical parametric mapping and automated image registration," Neuroimage 5, 271-279 (1997).
    [CrossRef] [PubMed]
  20. M. Jenkinson and S. Smith, "A global optimisation method for robust affine registration of brain images," Med. Image Anal. 5, 143-156 (2001).
    [CrossRef] [PubMed]
  21. K. Van Leemput and J. Hämäläinen, "A cross-platform software framework for medical image processing," in Proceedings of the Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Part II (Springer, 2004), pp. 1091-1092.
  22. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997).
    [CrossRef] [PubMed]
  23. Biomediucm Bioinformatics Unit, Haartmaninkatu 8, FIN-00290 Helsinki, Finland, http://home.bioinfo.helsinki.fi.

2005

2004

Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method, J. Biomed. Opt. 9, 1002-1012 (2004).
[CrossRef]

2003

A. Kienle, F. K. Forster, R. Diebolder, and H. Hibst, "Light propagation in dentin: influence of microstructure on anisotropy," Phys. Med. Biol. 48, N7-N14 (2003).
[CrossRef] [PubMed]

J. Heino, S. Arridge, J. Sikora, and E. Somersalo, "Anisotropic effects in highly scattering media," Phys. Rev. E 68, 031908 (2003).
[CrossRef]

L. Dagdug, G. H. Weill, and A. H. Gandjbakhche, "Effects of anisotropic optical properties on photon migration in structured tissues," Phys. Med. Biol. 48, 1361-1370 (2003).
[CrossRef] [PubMed]

2002

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogenous media including the adult human head," Opt. Express 10, 159-170 (2002).
[PubMed]

2001

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001).
[CrossRef]

D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans. Med. Imaging 20, 1131-1139 (2001).
[CrossRef] [PubMed]

M. Jenkinson and S. Smith, "A global optimisation method for robust affine registration of brain images," Med. Image Anal. 5, 143-156 (2001).
[CrossRef] [PubMed]

2000

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
[CrossRef] [PubMed]

1998

1997

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997).
[CrossRef] [PubMed]

S. J. Kiebel, J. Ashburner, J. B. Poline, and K. J. Friston, "MRI and PET coregistration--a cross validation of statistical parametric mapping and automated image registration," Neuroimage 5, 271-279 (1997).
[CrossRef] [PubMed]

1996

P. J. Basser and C. Pierpaoli, "Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI," J. Magn. Reson. Ser B 111, 209-219 (1996).
[CrossRef]

1995

L. H. Wang, S. L. Jacques, and L.-Q. Zheng, "Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1992

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "Application of the finite element method for the forward model in infrared absorption imaging," in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 97-108 (1992).
[CrossRef]

Alexander, D. C.

D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans. Med. Imaging 20, 1131-1139 (2001).
[CrossRef] [PubMed]

Almli, C. R.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Arridge, S.

J. Heino, S. Arridge, J. Sikora, and E. Somersalo, "Anisotropic effects in highly scattering media," Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Arridge, S. R.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "Application of the finite element method for the forward model in infrared absorption imaging," in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 97-108 (1992).
[CrossRef]

Ashburner, J.

S. J. Kiebel, J. Ashburner, J. B. Poline, and K. J. Friston, "MRI and PET coregistration--a cross validation of statistical parametric mapping and automated image registration," Neuroimage 5, 271-279 (1997).
[CrossRef] [PubMed]

Basser, P. J.

D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans. Med. Imaging 20, 1131-1139 (2001).
[CrossRef] [PubMed]

P. J. Basser and C. Pierpaoli, "Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI," J. Magn. Reson. Ser B 111, 209-219 (1996).
[CrossRef]

Bevilacqua, F.

Boas, D. A.

Conturo, T. E.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Cope, M.

Culver, J. P.

Dagdug, L.

L. Dagdug, G. H. Weill, and A. H. Gandjbakhche, "Effects of anisotropic optical properties on photon migration in structured tissues," Phys. Med. Biol. 48, 1361-1370 (2003).
[CrossRef] [PubMed]

Delpy, D. T.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "Application of the finite element method for the forward model in infrared absorption imaging," in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 97-108 (1992).
[CrossRef]

Diebolder, R.

A. Kienle, F. K. Forster, R. Diebolder, and H. Hibst, "Light propagation in dentin: influence of microstructure on anisotropy," Phys. Med. Biol. 48, N7-N14 (2003).
[CrossRef] [PubMed]

Dunn, A. K.

Essenpreis, M.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
[CrossRef] [PubMed]

Farrell, T. J.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
[CrossRef] [PubMed]

Firbank, M.

Forster, F. K.

A. Kienle, F. K. Forster, R. Diebolder, and H. Hibst, "Light propagation in dentin: influence of microstructure on anisotropy," Phys. Med. Biol. 48, N7-N14 (2003).
[CrossRef] [PubMed]

Friston, K. J.

S. J. Kiebel, J. Ashburner, J. B. Poline, and K. J. Friston, "MRI and PET coregistration--a cross validation of statistical parametric mapping and automated image registration," Neuroimage 5, 271-279 (1997).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

L. Dagdug, G. H. Weill, and A. H. Gandjbakhche, "Effects of anisotropic optical properties on photon migration in structured tissues," Phys. Med. Biol. 48, 1361-1370 (2003).
[CrossRef] [PubMed]

Gee, J. C.

D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans. Med. Imaging 20, 1131-1139 (2001).
[CrossRef] [PubMed]

Gelbardm, E. M.

J. Spanier and E. M. Gelbardm, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, 1969).

Hämäläinen, J.

K. Van Leemput and J. Hämäläinen, "A cross-platform software framework for medical image processing," in Proceedings of the Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Part II (Springer, 2004), pp. 1091-1092.

Hayakawa, C. K.

Heino, J.

J. Heino, S. Arridge, J. Sikora, and E. Somersalo, "Anisotropic effects in highly scattering media," Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Heiskala, J.

Hermann, M.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
[CrossRef] [PubMed]

Hibst, H.

A. Kienle, F. K. Forster, R. Diebolder, and H. Hibst, "Light propagation in dentin: influence of microstructure on anisotropy," Phys. Med. Biol. 48, N7-N14 (2003).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "Application of the finite element method for the forward model in infrared absorption imaging," in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 97-108 (1992).
[CrossRef]

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L.-Q. Zheng, "Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE IS, 1989), Vol. 5, pp. 102-111.

Järvenpää, S.

Jenkinson, M.

M. Jenkinson and S. Smith, "A global optimisation method for robust affine registration of brain images," Med. Image Anal. 5, 143-156 (2001).
[CrossRef] [PubMed]

Keijzer, M.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE IS, 1989), Vol. 5, pp. 102-111.

Kiebel, S. J.

S. J. Kiebel, J. Ashburner, J. B. Poline, and K. J. Friston, "MRI and PET coregistration--a cross validation of statistical parametric mapping and automated image registration," Neuroimage 5, 271-279 (1997).
[CrossRef] [PubMed]

Kienle, A.

A. Kienle, F. K. Forster, R. Diebolder, and H. Hibst, "Light propagation in dentin: influence of microstructure on anisotropy," Phys. Med. Biol. 48, N7-N14 (2003).
[CrossRef] [PubMed]

Krämer, U.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
[CrossRef] [PubMed]

Kumar, Y. Phaneendra

Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method, J. Biomed. Opt. 9, 1002-1012 (2004).
[CrossRef]

Lin, S.-P.

Marquez, G.

Marthur, A.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

McKinstry, R. C.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Miller, J. H.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Neil, J. J.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Neuvonen, T.

Nickell, S.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
[CrossRef] [PubMed]

Nissilä, I.

Okada, E.

Ozcan, A.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Patterson, M. S.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
[CrossRef] [PubMed]

Pierpaoli, C.

D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans. Med. Imaging 20, 1131-1139 (2001).
[CrossRef] [PubMed]

P. J. Basser and C. Pierpaoli, "Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI," J. Magn. Reson. Ser B 111, 209-219 (1996).
[CrossRef]

Poline, J. B.

S. J. Kiebel, J. Ashburner, J. B. Poline, and K. J. Friston, "MRI and PET coregistration--a cross validation of statistical parametric mapping and automated image registration," Neuroimage 5, 271-279 (1997).
[CrossRef] [PubMed]

Prahl, S. A.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE IS, 1989), Vol. 5, pp. 102-111.

Schefft, G. L.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Schmidt, F.

F. Schmidt, "Development of a time-resolved optical tomography system for neonatal brain imaging," Ph.D. dissertation (University of London, 1999).

Schwartz, J. A.

Schweiger, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "Application of the finite element method for the forward model in infrared absorption imaging," in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 97-108 (1992).
[CrossRef]

Shiran, S. I.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Sikora, J.

J. Heino, S. Arridge, J. Sikora, and E. Somersalo, "Anisotropic effects in highly scattering media," Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Smith, S.

M. Jenkinson and S. Smith, "A global optimisation method for robust affine registration of brain images," Med. Image Anal. 5, 143-156 (2001).
[CrossRef] [PubMed]

Snyder, A. Z.

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Somersalo, E.

Spanier, J.

Stott, J. J.

Thomsen, S. L.

Tromberg, B. J.

Van Leemput, K.

K. Van Leemput and J. Hämäläinen, "A cross-platform software framework for medical image processing," in Proceedings of the Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Part II (Springer, 2004), pp. 1091-1092.

Vasu, R. M.

Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method, J. Biomed. Opt. 9, 1002-1012 (2004).
[CrossRef]

Venugopalan, V.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L.-Q. Zheng, "Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Wang, L.-H.

Weill, G. H.

L. Dagdug, G. H. Weill, and A. H. Gandjbakhche, "Effects of anisotropic optical properties on photon migration in structured tissues," Phys. Med. Biol. 48, 1361-1370 (2003).
[CrossRef] [PubMed]

Welch, A. J.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE IS, 1989), Vol. 5, pp. 102-111.

You, J. S.

Zheng, L.-Q.

L. H. Wang, S. L. Jacques, and L.-Q. Zheng, "Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Opt.

Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method, J. Biomed. Opt. 9, 1002-1012 (2004).
[CrossRef]

Cereb. Cortex

R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed.

L. H. Wang, S. L. Jacques, and L.-Q. Zheng, "Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans. Med. Imaging 20, 1131-1139 (2001).
[CrossRef] [PubMed]

J. Magn. Reson. Ser B

P. J. Basser and C. Pierpaoli, "Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI," J. Magn. Reson. Ser B 111, 209-219 (1996).
[CrossRef]

Med. Image Anal.

M. Jenkinson and S. Smith, "A global optimisation method for robust affine registration of brain images," Med. Image Anal. 5, 143-156 (2001).
[CrossRef] [PubMed]

Neuroimage

S. J. Kiebel, J. Ashburner, J. B. Poline, and K. J. Friston, "MRI and PET coregistration--a cross validation of statistical parametric mapping and automated image registration," Neuroimage 5, 271-279 (1997).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

L. Dagdug, G. H. Weill, and A. H. Gandjbakhche, "Effects of anisotropic optical properties on photon migration in structured tissues," Phys. Med. Biol. 48, 1361-1370 (2003).
[CrossRef] [PubMed]

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000).
[CrossRef] [PubMed]

A. Kienle, F. K. Forster, R. Diebolder, and H. Hibst, "Light propagation in dentin: influence of microstructure on anisotropy," Phys. Med. Biol. 48, N7-N14 (2003).
[CrossRef] [PubMed]

Phys. Rev. E

J. Heino, S. Arridge, J. Sikora, and E. Somersalo, "Anisotropic effects in highly scattering media," Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Proc. SPIE

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "Application of the finite element method for the forward model in infrared absorption imaging," in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 97-108 (1992).
[CrossRef]

Other

Biomediucm Bioinformatics Unit, Haartmaninkatu 8, FIN-00290 Helsinki, Finland, http://home.bioinfo.helsinki.fi.

K. Van Leemput and J. Hämäläinen, "A cross-platform software framework for medical image processing," in Proceedings of the Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Part II (Springer, 2004), pp. 1091-1092.

F. Schmidt, "Development of a time-resolved optical tomography system for neonatal brain imaging," Ph.D. dissertation (University of London, 1999).

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE IS, 1989), Vol. 5, pp. 102-111.

J. Spanier and E. M. Gelbardm, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, 1969).

General Electric Company, 3135 Easton Turnpike, Fairfield, Conn. 06828-0001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Slices of DT and T1 data along with the segmentation of the T1 data. (a) FA index calculated from the DT data. (b) T1-weighted anatomical MR image. (c) Segmentation of the T1-weighted image.

Fig. 2
Fig. 2

Optode positions. The light source is shown as a large arrow pointing toward the center of the head, detectors numbered 1 through 20 are shown as smaller arrows pointing outward.

Fig. 3
Fig. 3

Segmented head models of the two infants with borders of depth layers shown in black. Slices are taken at the level of the optical fibers.

Fig. 4
Fig. 4

Simulated measurement data for infant I. In the upper row, amplitude and phase response in the detectors on the circumference of the head. Anisotropic (AI) and isotropic (I) cases and the effect of inclusion of the CSF in the model are considered. In the lower row, differences in amplitude and phase responses between anisotropic and isotropic cases are shown for the case in which the CSF is taken into account and for the case in which it is not taken into account. Amplitude data are given in natural logarithmic scale (arbitrary units), phase response is given in radians. Error bars represent the standard deviation between different MC runs. The X-axis coordinate is the detector number.

Fig. 5
Fig. 5

Simulated measurement data for infant II. In the upper row, amplitude and phase response in the detectors on the circumference of the head. Anisotropic (AI) and isotropic (I) cases and the effect of inclusion of the CSF in the model are considered. In the lower row, differences in amplitude and phase responses between anisotropic and isotropic cases are shown for the case in which the CSF is taken into account and for the case in which it is not taken into account. Amplitude data are given in natural logarithmic scale (arbitrary units), phase response is given in radians. Error bars represent the standard deviation between different MC runs. The X-axis coordinate is the detector number.

Fig. 6
Fig. 6

Simulated measurement data for infant II using correct and general anisotropy models. In the upper row, amplitude and phase responses in detectors on the circumference of the head for the cases with correct and general anisotropy models and the isotropic case. In the lower row, the difference from the isotropic model is shown for the correct and general anisotropy models. Amplitude data are given in natural logarithmic scale (arbitrary units), phase response is given in radians. Error bars represent the standard deviation between different MC runs. The X-axis coordinate is the detector number.

Fig. 7
Fig. 7

Spatial distribution of sensitivity of a measurement between two source–detector pairs (a) and (b). The source and detector are indicated by arrows entering and exiting the head. Natural logarithm of scaled sensitivity ln   [ ( A Δ μ s ) / A ] is shown. Sensitivity was calculated per cubical tissue element ( 0.6   mm side length), unit is millimeters. AI and I cases are shown with and without inclusion of the CSF in the model. In difference images, the difference in the logarithm of the scaled intensity is shown.

Tables (2)

Tables Icon

Table 1 Optical Properties of Tissue Types a

Tables Icon

Table 2 Relative Sensitivity to Different Depths by the Detector Group a

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

μ a
μ s
μ s
μ s ,iso s ^ T M s s ^
s ^
μ s ,iso
3 × 3
M s
A s , d μ a , r , A s , d μ s , r ,
μ a , r
μ s , r
μ a
μ s
A ^
μ a
μ s
μ ^ a
μ ^ s
    A ^ / A = ( μ ^ s μ s ) j   exp [ ( μ ^ t μ t ) L ] , μ t = μ a + μ s .
A ^ μ ^ a = L A ^ ,
A ^ μ ^ s = ( L + j μ ^ s 1 ) A ^ .
μ s
μ a
mm 1
μ a
Δ μ a
μ a
μ s
256 × 192
220   mm × 165   mm
1.5 mm
128 × 128
20   cm × 20   cm
4   mm
5   mm
M s
D MRI
M s = E T Λ 1 E 1 3   tr ( Λ 1 ) ,
3 × 3
D MRI
1 3   tr ( Λ 1 )
s ^ T M s s ^
μ s ,iso
6   mm
18   mm
2 % 3 %
0.6   mm
6   mm
ln   [ ( A Δ μ s ) / A ]
0.6   mm

Metrics