Abstract

To investigate the accuracy of measuring cerebral blood flow (CBF) using a bolus injection of Indocyanine Green (ICG) detected by near-infrared spectroscopy in adult human heads, simulations were performed using a two-layered model representing the extracerebral and intracerebral layers. Modeled optical data were converted into tissue ICG concentration using either the one-detector modified Beer–Lambert law (MBLL) method, or the two-detector partial path-length (PPL) method. The CBFs were estimated using deconvolution and blood flow index techniques. Using the MBLL method, the CBFs were significantly underestimated but the PPL method improved their accuracy and robustness, especially when used as relative measures. The dispersion of the arterial input function also affected the CBF estimates.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004).
    [CrossRef] [PubMed]
  2. C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
    [PubMed]
  3. J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998).
    [CrossRef] [PubMed]
  4. R. Springett, Y. Sakata, and D. T. Delpy, "Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green," Phys. Med. Biol. 46, 2209-2225 (2001).
    [CrossRef] [PubMed]
  5. C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
    [PubMed]
  6. W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
    [CrossRef] [PubMed]
  7. F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
    [CrossRef] [PubMed]
  8. B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, "Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow," Intensive Care Med. 29, 196-200 (2003).
    [PubMed]
  9. I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.
  10. K. Zierler, "Equations for measuring blood flow by external monitoring of radioisotopes," Circ. Res. 16, 309-321 (1965).
    [PubMed]
  11. G. T. Gobbel and J. R. Fike, "A deconvolution method for evaluating indicator-dilution curves," Phys. Med. Biol. 39, 1833-1854 (1994).
    [CrossRef] [PubMed]
  12. D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
    [CrossRef] [PubMed]
  13. E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
    [CrossRef] [PubMed]
  14. R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003).
    [CrossRef] [PubMed]
  15. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998).
    [CrossRef]
  16. P. Meier and K. L. Zierler, "On the theory of the indicator-dilution method for measurement of blood flow and volume," J. Appl. Physiol. 6, 731-743 (1954).
    [PubMed]
  17. L. Friberg, J. Kastrup, M. Hansen, and J. Bulow, "Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique," Scand. J. Clin. Lab. Invest. 46, 375-379 (1986).
    [CrossRef] [PubMed]
  18. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
    [CrossRef] [PubMed]
  19. J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
    [PubMed]
  20. F. Calamante, D. G. Gadian, and A. Connelly, "Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition," Magn. Reson. Med. 22, 466-473 (2000).
    [CrossRef]
  21. R. W. Stow and P. S. Hetzel, "An empirical formula for indicator-dilution curves as obtained in human beings," J. Appl. Physiol. 7, 161-167 (1954).
    [PubMed]
  22. K. Murase, M. Shinohara, and Y. Yamazaki, "Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging," Phys. Med. Biol. 46, 3146-3159 (2001).
    [CrossRef]
  23. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
    [CrossRef] [PubMed]
  24. P. Mansfield, "Imaging by nuclear magnetic resonance," J. Phys. E 21, 18-30 (1988).
    [CrossRef]
  25. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
    [CrossRef] [PubMed]
  26. M. Essenpreis, C. E. Elwell, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993).
    [CrossRef] [PubMed]
  27. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
    [CrossRef] [PubMed]
  28. Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, "Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy," J. Biomed. Opt. 10, 064032 (2005).
    [CrossRef]
  29. S. J. Matcher and C. E. Cooper, "Absolute quantification of deoxyhaemoglobin concentration in tissue near-infrared spectroscopy," Phys. Med. Biol. 39, 1295-1312 (1994).
    [CrossRef] [PubMed]
  30. P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain," Proc. SPIE 1888, 454-465 (1993).
    [CrossRef]
  31. S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
    [CrossRef] [PubMed]
  32. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
    [CrossRef] [PubMed]
  33. M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
    [CrossRef] [PubMed]
  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).
  35. L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996).
    [CrossRef] [PubMed]
  36. E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, "Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyanine green dye dilution and near-infrared spectroscopy," J. Neurosurg. Anesthesiol. 13, 43-48 (2001).
    [CrossRef] [PubMed]
  37. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
    [CrossRef] [PubMed]
  38. L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999).
    [CrossRef] [PubMed]

2005 (2)

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, "Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy," J. Biomed. Opt. 10, 064032 (2005).
[CrossRef]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (4)

B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, "Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow," Intensive Care Med. 29, 196-200 (2003).
[PubMed]

E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
[CrossRef] [PubMed]

R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
[CrossRef] [PubMed]

2002 (3)

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

2001 (4)

R. Springett, Y. Sakata, and D. T. Delpy, "Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green," Phys. Med. Biol. 46, 2209-2225 (2001).
[CrossRef] [PubMed]

K. Murase, M. Shinohara, and Y. Yamazaki, "Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging," Phys. Med. Biol. 46, 3146-3159 (2001).
[CrossRef]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, "Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyanine green dye dilution and near-infrared spectroscopy," J. Neurosurg. Anesthesiol. 13, 43-48 (2001).
[CrossRef] [PubMed]

2000 (1)

F. Calamante, D. G. Gadian, and A. Connelly, "Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition," Magn. Reson. Med. 22, 466-473 (2000).
[CrossRef]

1999 (2)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999).
[CrossRef] [PubMed]

1998 (3)

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998).
[CrossRef] [PubMed]

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998).
[CrossRef]

1997 (2)

C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
[PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
[CrossRef] [PubMed]

1996 (2)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996).
[CrossRef] [PubMed]

1994 (3)

S. J. Matcher and C. E. Cooper, "Absolute quantification of deoxyhaemoglobin concentration in tissue near-infrared spectroscopy," Phys. Med. Biol. 39, 1295-1312 (1994).
[CrossRef] [PubMed]

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
[PubMed]

G. T. Gobbel and J. R. Fike, "A deconvolution method for evaluating indicator-dilution curves," Phys. Med. Biol. 39, 1833-1854 (1994).
[CrossRef] [PubMed]

1993 (3)

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

M. Essenpreis, C. E. Elwell, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

1990 (1)

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

1988 (1)

P. Mansfield, "Imaging by nuclear magnetic resonance," J. Phys. E 21, 18-30 (1988).
[CrossRef]

1986 (1)

L. Friberg, J. Kastrup, M. Hansen, and J. Bulow, "Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique," Scand. J. Clin. Lab. Invest. 46, 375-379 (1986).
[CrossRef] [PubMed]

1965 (1)

K. Zierler, "Equations for measuring blood flow by external monitoring of radioisotopes," Circ. Res. 16, 309-321 (1965).
[PubMed]

1954 (2)

P. Meier and K. L. Zierler, "On the theory of the indicator-dilution method for measurement of blood flow and volume," J. Appl. Physiol. 6, 731-743 (1954).
[PubMed]

R. W. Stow and P. S. Hetzel, "An empirical formula for indicator-dilution curves as obtained in human beings," J. Appl. Physiol. 7, 161-167 (1954).
[PubMed]

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Alkadhi, H.

E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
[CrossRef] [PubMed]

Ammann, R. A.

B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, "Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow," Intensive Care Med. 29, 196-200 (2003).
[PubMed]

Arridge, S. R.

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

M. Essenpreis, C. E. Elwell, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

Azzopardi, D.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998).
[CrossRef] [PubMed]

Ballesteros, J. R.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Bays, R.

Brawanski, A.

R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003).
[CrossRef] [PubMed]

Brown, D. W.

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

Bulow, J.

L. Friberg, J. Kastrup, M. Hansen, and J. Bulow, "Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique," Scand. J. Clin. Lab. Invest. 46, 375-379 (1986).
[CrossRef] [PubMed]

Burnett, M. G.

Calamante, F.

F. Calamante, D. G. Gadian, and A. Connelly, "Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition," Magn. Reson. Med. 22, 466-473 (2000).
[CrossRef]

Chance, B.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Chesler, D. A.

L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999).
[CrossRef] [PubMed]

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996).
[CrossRef] [PubMed]

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

Connelly, A.

F. Calamante, D. G. Gadian, and A. Connelly, "Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition," Magn. Reson. Med. 22, 466-473 (2000).
[CrossRef]

Cooper, C. E.

S. J. Matcher and C. E. Cooper, "Absolute quantification of deoxyhaemoglobin concentration in tissue near-infrared spectroscopy," Phys. Med. Biol. 39, 1295-1312 (1994).
[CrossRef] [PubMed]

Cope, M.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
[PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
[PubMed]

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Delpy, D. T.

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
[CrossRef] [PubMed]

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

R. Springett, Y. Sakata, and D. T. Delpy, "Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green," Phys. Med. Biol. 46, 2209-2225 (2001).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
[PubMed]

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

M. Essenpreis, C. E. Elwell, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.

Detre, J. A.

Dognitz, N.

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

Durduran, T.

Edwards, A. D.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998).
[CrossRef] [PubMed]

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
[PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

Elwell, C. E.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
[PubMed]

M. Essenpreis, C. E. Elwell, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.

Essenpreis, M.

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

M. Essenpreis, C. E. Elwell, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Fallon, P.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

Faltermeier, R.

R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003).
[CrossRef] [PubMed]

Fantini, S.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Fike, J. R.

G. T. Gobbel and J. R. Fike, "A deconvolution method for evaluating indicator-dilution curves," Phys. Med. Biol. 39, 1833-1854 (1994).
[CrossRef] [PubMed]

Firbank, F.

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).

Franceschini, M. A.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Friberg, L.

L. Friberg, J. Kastrup, M. Hansen, and J. Bulow, "Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique," Scand. J. Clin. Lab. Invest. 46, 375-379 (1986).
[CrossRef] [PubMed]

Gadian, D. G.

F. Calamante, D. G. Gadian, and A. Connelly, "Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition," Magn. Reson. Med. 22, 466-473 (2000).
[CrossRef]

Gertsch, S.

B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, "Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow," Intensive Care Med. 29, 196-200 (2003).
[PubMed]

Gharavi, J.

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

Gobbel, G. T.

G. T. Gobbel and J. R. Fike, "A deconvolution method for evaluating indicator-dilution curves," Phys. Med. Biol. 39, 1833-1854 (1994).
[CrossRef] [PubMed]

Goetz, A. E.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

Goldstone, J. C.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

Gora, F.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

Greenberg, J. H.

Gunnoe, E.

C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
[PubMed]

Gyldensted, C.

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996).
[CrossRef] [PubMed]

Habler, O.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

Han, V.

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

Hansen, M.

L. Friberg, J. Kastrup, M. Hansen, and J. Bulow, "Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique," Scand. J. Clin. Lab. Invest. 46, 375-379 (1986).
[CrossRef] [PubMed]

Hetzel, P. S.

R. W. Stow and P. S. Hetzel, "An empirical formula for indicator-dilution curves as obtained in human beings," J. Appl. Physiol. 7, 161-167 (1954).
[PubMed]

Hiraoka, M.

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, "Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy," J. Biomed. Opt. 10, 064032 (2005).
[CrossRef]

Hueber, D. M.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Iguchi, Y.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, "Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy," J. Biomed. Opt. 10, 064032 (2005).
[CrossRef]

Kastrup, J.

L. Friberg, J. Kastrup, M. Hansen, and J. Bulow, "Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique," Scand. J. Clin. Lab. Invest. 46, 375-379 (1986).
[CrossRef] [PubMed]

Keller, E.

E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
[CrossRef] [PubMed]

E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, "Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyanine green dye dilution and near-infrared spectroscopy," J. Neurosurg. Anesthesiol. 13, 43-48 (2001).
[CrossRef] [PubMed]

Kienle, A.

Kleen, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

Kohl-Bareis, M.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

Kollias, S. S.

E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
[CrossRef] [PubMed]

Kuebler, W. M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

Kuhnle, G. E. H.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Lee, T. Y.

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

Leung, T. S.

I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.

Liebert, A.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

Ma, H. Y.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Macdonald, R.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

Malak, J.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

Mansfield, P.

P. Mansfield, "Imaging by nuclear magnetic resonance," J. Phys. E 21, 18-30 (1988).
[CrossRef]

Marks, K.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998).
[CrossRef] [PubMed]

Martin, M.

E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, "Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyanine green dye dilution and near-infrared spectroscopy," J. Neurosurg. Anesthesiol. 13, 43-48 (2001).
[CrossRef] [PubMed]

Matcher, S. J.

Meek, J. H.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

Meier, P.

P. Meier and K. L. Zierler, "On the theory of the indicator-dilution method for measurement of blood flow and volume," J. Appl. Physiol. 6, 731-743 (1954).
[PubMed]

Menon, R.

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

Messmer, K.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

Moller, M.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

Murase, K.

K. Murase, M. Shinohara, and Y. Yamazaki, "Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging," Phys. Med. Biol. 46, 3146-3159 (2001).
[CrossRef]

Nadler, A.

E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
[CrossRef] [PubMed]

Newton, C. R. J. C.

C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
[PubMed]

Niederer, P.

E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
[CrossRef] [PubMed]

Ntziachristos, V.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Obrig, H.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

Okada, E.

Ostergaard, L.

L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999).
[CrossRef] [PubMed]

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996).
[CrossRef] [PubMed]

Patel, J.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998).
[CrossRef] [PubMed]

Patterson, M. S.

Pfenninger, J.

B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, "Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow," Intensive Care Med. 29, 196-200 (2003).
[PubMed]

Picot, P.

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).

Reynolds, E. O.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

Reynolds, E. O. R.

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
[PubMed]

Richardson, C. E.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

Rinneberg, H.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

Roberts, I.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998).
[CrossRef] [PubMed]

Rosen, B. R.

L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999).
[CrossRef] [PubMed]

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996).
[CrossRef] [PubMed]

Rothoerl, R. D.

R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003).
[CrossRef] [PubMed]

Sakata, Y.

R. Springett, Y. Sakata, and D. T. Delpy, "Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green," Phys. Med. Biol. 46, 2209-2225 (2001).
[CrossRef] [PubMed]

Sato, C.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, "Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy," J. Biomed. Opt. 10, 064032 (2005).
[CrossRef]

Schebesch, K. M.

R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003).
[CrossRef] [PubMed]

Sckell, A.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

Shimada, M.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, "Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy," J. Biomed. Opt. 10, 064032 (2005).
[CrossRef]

Shinde, S.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

Shinohara, M.

K. Murase, M. Shinohara, and Y. Yamazaki, "Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging," Phys. Med. Biol. 46, 3146-3159 (2001).
[CrossRef]

Smith, M.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.

Sorensen, A. G.

L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999).
[CrossRef] [PubMed]

Springett, R.

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

R. Springett, Y. Sakata, and D. T. Delpy, "Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green," Phys. Med. Biol. 46, 2209-2225 (2001).
[CrossRef] [PubMed]

Steinbrink, J.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Stow, R. W.

R. W. Stow and P. S. Hetzel, "An empirical formula for indicator-dilution curves as obtained in human beings," J. Appl. Physiol. 7, 161-167 (1954).
[PubMed]

Tachtsidis, I.

I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).

Tisdall, M.

I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.

Traystman, R. J.

C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
[PubMed]

Tyszczuk, L.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

Uludag, K.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

van den Bergh, H.

van der Zee, P.

M. Essenpreis, C. E. Elwell, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).

Villringer, A.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

Wabnitz, H.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

Wagner, B.

C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
[PubMed]

Wagner, B. P.

B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, "Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow," Intensive Care Med. 29, 196-200 (2003).
[PubMed]

Wagnieres, G.

Wallace, D.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Wang, J.

Weisskoff, R. M.

L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999).
[CrossRef] [PubMed]

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996).
[CrossRef] [PubMed]

Welte, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

Wilson, D. A.

C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
[PubMed]

Woertgen, C.

R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003).
[CrossRef] [PubMed]

Wolf, M.

E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, "Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyanine green dye dilution and near-infrared spectroscopy," J. Neurosurg. Anesthesiol. 13, 43-48 (2001).
[CrossRef] [PubMed]

Wray, S.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

Wyatt, J. S.

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
[PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

Yamazaki, Y.

K. Murase, M. Shinohara, and Y. Yamazaki, "Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging," Phys. Med. Biol. 46, 3146-3159 (2001).
[CrossRef]

Yodh, A. G.

Yonekawa, Y.

E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
[CrossRef] [PubMed]

E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, "Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyanine green dye dilution and near-infrared spectroscopy," J. Neurosurg. Anesthesiol. 13, 43-48 (2001).
[CrossRef] [PubMed]

Yu, G.

Zhang, Q.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

Zhou, C.

Zierler, K.

K. Zierler, "Equations for measuring blood flow by external monitoring of radioisotopes," Circ. Res. 16, 309-321 (1965).
[PubMed]

Zierler, K. L.

P. Meier and K. L. Zierler, "On the theory of the indicator-dilution method for measurement of blood flow and volume," J. Appl. Physiol. 6, 731-743 (1954).
[PubMed]

Appl. Opt. (4)

Biomed. Opt. (1)

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, "Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy," J. Biomed. Opt. 10, 064032 (2005).
[CrossRef]

Circ. Res. (1)

K. Zierler, "Equations for measuring blood flow by external monitoring of radioisotopes," Circ. Res. 16, 309-321 (1965).
[PubMed]

Intensive Care Med. (1)

B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, "Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow," Intensive Care Med. 29, 196-200 (2003).
[PubMed]

J. Appl. Physiol. (4)

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994).
[PubMed]

P. Meier and K. L. Zierler, "On the theory of the indicator-dilution method for measurement of blood flow and volume," J. Appl. Physiol. 6, 731-743 (1954).
[PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990).
[PubMed]

R. W. Stow and P. S. Hetzel, "An empirical formula for indicator-dilution curves as obtained in human beings," J. Appl. Physiol. 7, 161-167 (1954).
[PubMed]

J. Biomed. Opt. (1)

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (3)

C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997).
[PubMed]

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998).
[CrossRef] [PubMed]

L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999).
[CrossRef] [PubMed]

J. Neurosurg. Anesthesiol. (2)

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002).
[CrossRef] [PubMed]

E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, "Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyanine green dye dilution and near-infrared spectroscopy," J. Neurosurg. Anesthesiol. 13, 43-48 (2001).
[CrossRef] [PubMed]

J. Phys. E (1)

P. Mansfield, "Imaging by nuclear magnetic resonance," J. Phys. E 21, 18-30 (1988).
[CrossRef]

Magn. Reson. Med. (2)

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996).
[CrossRef] [PubMed]

F. Calamante, D. G. Gadian, and A. Connelly, "Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition," Magn. Reson. Med. 22, 466-473 (2000).
[CrossRef]

Neuroimage (2)

E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005).
[CrossRef] [PubMed]

Neurol. Res. (1)

R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Pediatr. Res. (3)

D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002).
[CrossRef] [PubMed]

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996).
[CrossRef] [PubMed]

Phys. Med. Biol. (7)

M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

K. Murase, M. Shinohara, and Y. Yamazaki, "Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging," Phys. Med. Biol. 46, 3146-3159 (2001).
[CrossRef]

S. J. Matcher and C. E. Cooper, "Absolute quantification of deoxyhaemoglobin concentration in tissue near-infrared spectroscopy," Phys. Med. Biol. 39, 1295-1312 (1994).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001).
[CrossRef] [PubMed]

R. Springett, Y. Sakata, and D. T. Delpy, "Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green," Phys. Med. Biol. 46, 2209-2225 (2001).
[CrossRef] [PubMed]

G. T. Gobbel and J. R. Fike, "A deconvolution method for evaluating indicator-dilution curves," Phys. Med. Biol. 39, 1833-1854 (1994).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Scand. J. Clin. Lab. Invest. (1)

L. Friberg, J. Kastrup, M. Hansen, and J. Bulow, "Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique," Scand. J. Clin. Lab. Invest. 46, 375-379 (1986).
[CrossRef] [PubMed]

Other (2)

I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Modeled and experimentally measured arterial input function [ ICG ( t ) ] art . (b) Modeled tissue ICG concentration time curves in the extracerebral layer [ ICG ( t ) ] ext and intracerebral layer [ ICG ( t ) ] int .

Fig. 2
Fig. 2

(a) Tissue ICG time-concentration curves calculated by the MBLL method using detector 2 (SD spacing = 50   mm ), [ ICG ( t ) ] det2 with three different dispersion factors, β = 0, 0.5, and 1 s. (b) Tissue ICG time-concentration curves calculated by the PPL method using detectors 1 and 2 (SD spacings = 45 and 50   mm ), [ ICG ( t ) ] det1&2 with three different dispersion factors, β = 0, 0.5, and 1 s.

Fig. 3
Fig. 3

Numerical Experiment 1: Extracerebral blood flow (the upper layer) was kept constant at 6.5 ml∕100 g∕min, and the real CBF (the lower layer) varied between 20 % and 20% of its baseline value at 60 ml∕100 g∕min. (a), (c), and (e) Results obtained using the MBLL method; (b), (d), and (f) results obtained using the PPL method. The results are presented as absolute values (ml∕100 g∕min) for estimated CBFs in (a) and (b), and as relative values (% change from the middle value) for estimated CBFs and BFIs in (c), (d), (e), and (f). Different thicknesses of the extracerebral layer at 8 (♢), 10 ( + ) and 12 (○) mm were used. The dotted line represents the ideal estimation of CBF, which follows exactly the real CBF.

Fig. 4
Fig. 4

Numerical Experiment 2: CBF (the lower layer) was kept constant at 60 ml∕100 g∕min, and the extracerebral blood flow (the upper layer) varied between 20 % and 20% of its nominal value at 6.5 ml∕100 g∕min. (a), (c), and (e) Results obtained using the MBLL method. (b), (d), and (f) Results obtained using the PPL method. The results are presented as absolute values (ml∕100 g∕min) for estimated CBFs in (a) and (b) and as relative values (% change from the middle value) for estimated CBFs and BFIs in (c), (d), (e), and (f). Different thicknesses of the extracerebral layer at 8 (♢), 10 ( + ) and 12 (○) mm were used. The dotted line represents the ideal estimation of CBF, which is not biased by the extracerebral blood flow.

Fig. 5
Fig. 5

Numerical Experiment 3: Both the CBF (the lower layer) and the extracerebral blood flows (the upper layer) were kept constant at 60 and 6.5 ml∕100 g∕min, respectively. The β dispersion factor in the intracerebral layer varied between 0 and 1 s (in steps of 0.25 s). (a), (c), and (e) Results obtained using the MBLL method. (b), (d), and (f) Results obtained using the PPL method. The results are presented as absolute values (ml∕100 g∕min) for estimated CBFs in (a) and (b) and as relative values (% change from the first value when β = 0 s) for estimated CBFs and BFIs in (c), (d), (e), and (f). The results were calculated with thicknesses of the extracerebral layer at 8 (♢), 10 ( + ) and 12 (○) mm. The dotted line represents the ideal estimation of CBF, which is not biased by any dispersion in the vasculature.

Tables (2)

Tables Icon

Table 1 Physiological and Optical Parameters (Baseline Value) a

Tables Icon

Table 2 Parameters Used in the Three Numerical Experiments

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C t i s ( t ) = F 0 t C a r t ( τ ) R ( t τ ) d τ ,
[ ICG ( t ) ] a r t = n = 1 3 A n exp [ k n f ( t , t n ) 2 ] ,
f ( t , t n ) = ln [ ( t τ n ) / t n ] for   t τ n 0 otherwise ,
R ( t ) = MTT ( β MTT ) [ exp ( t / β ) exp ( t / MTT ) ] ,
μ a 0 ( λ ) = ε HHb ( λ ) [ HbT ] ( 1 SO 2 ) + ε Hb O 2 ( λ ) [ HbT ] SO 2 + μ a , H 2 O ( λ ) W + μ a b k ,
μ a ICG ( t , λ ) = μ a 0 ( λ ) + [ ICG ( t ) ] ε ICG ( λ ) ,
[ Δ A 1 ( λ ) Δ A 2 ( λ ) ] = [ ρ 1 , 1 ( λ ) ρ 1 , 2 ( λ ) ρ 2 , 1 ( λ ) ρ 2 , 2 ( λ ) ] [ Δ μ a , 1 ( λ ) Δ μ a , 2 ( λ ) ] ,
[ ICG ( t j ) ] tis = Δ t · F i = 0 j [ ICG ( t j ) ] art · R ( t j t i ) ,

Metrics