Abstract

The fabrication of embedded microchannels monolithically integrated with optical waveguides by plasma-enhanced chemical vapor deposition of doped silica glass is reported. Both waveguide ridges and template ridges for microchannel formation are patterned in a single photolithography step. The microchannels are formed within an overlay of borophosphosilicate glass (BPSG), which also serves as the top cladding layer of the silica waveguides. No top sealing of the channels is required. Surface accessible fluid input ports are formed in a BPSG layer, with no additional steps, by appropriate design of template layers. By tightly controlling the refractive index of the waveguide layer and the microchannel-forming layer, fully integrated structures facilitating optical coupling between solid waveguides and liquids segments in various geometries are demonstrated. Applications in liquid-filled photonic device elements for novel nonlinear optical devices and in optical sensors and on-chip spectroscopy are outlined.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
    [CrossRef]
  2. L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).
  3. V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
    [CrossRef]
  4. V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
    [CrossRef]
  5. A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
    [CrossRef]
  6. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, "Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems," Appl. Opt. 42, 4072-4079 (2003).
    [CrossRef] [PubMed]
  7. G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
    [CrossRef]
  8. H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).
  9. A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
    [CrossRef]
  10. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, and J. P. Kutter, "Monolithic integration of microfluidic channels and optical waveguides in silica on silicon," Appl. Opt. 40, 6246-6251 (2001).
    [CrossRef]
  11. Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).
  12. Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).
  13. A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).
  14. C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
    [CrossRef]
  15. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
    [CrossRef]
  16. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
    [CrossRef]
  17. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]

2006 (1)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

2005 (4)

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

2004 (4)

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

2003 (2)

2001 (1)

1997 (1)

Aitchison, J. S.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Bado, P.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Bellouard, Y.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Berdichevsky, Y.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

Birks, T. A.

Blanchetière, C.

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

Callender, C. L.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

Camou, S.

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Cheng, Y.

Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).

Cleary, A.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Cooper, J. M.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Currie, J. F.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Dugan, M.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Dumais, P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

Durst, M. E.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

El-Ali, J.

Eldada, L.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Friis, P.

Fujii, T.

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Fujita, H.

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Fujita, J.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Garcia-Blanco, S.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Glidle, A.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Goel, S.

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Grundmann, A.

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Guan, G.-L.

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

Hoppe, K.

Hübner, J.

Izuhara, T.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Knight, J. C.

Kutter, J. P.

Laybourn, P.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Ledderhof, C. J.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

Lee, G.-B.

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

Leeds, A. R.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Leistiko, O.

Lien, V.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

Lin, C.-H.

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

Lo, Y.-H.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

Mabesa, J. R.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

McMullen, J. N.

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Midorikawa, K.

Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).

Mogensen, K. B.

Noad, J. P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

Paranjape, M.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Qiao, H.

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Radojevic, A.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Reinald, G.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Russell, P. St. J.

Said, A.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

Said, A. A.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Schneider, T. W.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Scott, A.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Sugioka, K.

Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).

Tixier-Mita, A.

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Van Keuren, E. T.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Wolff, A.

Zhao, K.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

IEEE Sens. J. (1)

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

J. Mater. Res. (1)

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

Opt. Lett. (1)

Photon. Technol. Lett. (2)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

Sens. Actuators A (2)

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

Other (4)

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

SEM image of a fabricated single channel structure. The template ridges are visible on either side of the channel.

Fig. 2
Fig. 2

Process to form embedded microchannels in BPSG (a) PECVD of template layer, (b) formation of template ridges—photolithography + RIE, (c) PECVD of BPSG, (d) high-temperature anneal ( 1050 ° C ) to form microchannels.

Fig. 3
Fig. 3

(a) SEM image of the cross section of an array of microchannels. (b) Top-view optical micrograph of the microchannel array.

Fig. 4
Fig. 4

(Color online) First optical mode of a typical microchannel structure (top) at 1550 nm wavelength, with n clad = 1.455 , n core = 1.463 , and (a) n chan = 1.45 , (b) n chan = 1.47 , (c) n chan = 1.50 .

Fig. 5
Fig. 5

Microfluidic circuitry in the BPSG layer. (a) Shallow bends, (b) tight bends (c) T junction, and (d) splitter. The microchannels are visible as dark curves within the structures.

Fig. 6
Fig. 6

Evolution of the microchannel cross section as the underlying ridge spacing changes from 17   μm (top left) to 7.5   μm (bottom right).

Fig. 7
Fig. 7

Schematic of (a) ridge structure used to fabricate fluid access points, (b) resulting pair of microchannels with the surface access formed after the deposition of the BPSG layer.

Fig. 8
Fig. 8

SEM image of the surface of fluid inputs for a pair of microchannels with a detail of the point at which the microchannels become completely enclosed within the BPSG layer.

Fig. 9
Fig. 9

Simple junction designed to separate fluid and optical inputs. (a) Schematic of the photomask template, (b) optical micrograph of the fabricated junction. The triangular section on the bottom, designed as the endpoint of a contact pad, (appearing as a dotted outline on the template illustration) is not a necessary element to the junction.

Fig. 10
Fig. 10

(a) Cross section of structure with two microchannels formed between three Ge-doped silica ridges. (b) Simulated optical field in a three-core structure showing coupling of light between the solid Ge-doped silica waveguide cores and the liquid-filled microchannels.

Fig. 11
Fig. 11

(a) Ridges etched into the Ge-doped silica layer to form a fluid intake and allow for the direct optical coupling from a ridge waveguide into a fluid-filled microchannel. (b) Fully formed junction after the deposition of the BPSG layer. The microchannel can be seen as a dark Y-shaped structure; the waveguide ridge is seen as the light central core on the left. The optical transition region is denoted as L c .

Fig. 12
Fig. 12

Microscope images showing a series of waveguide-liquid core junctions with varying values of the junction length, L j ranging from 40   μm (top) to 200   μm (bottom). The corresponding values of L c range from 25 to 30   μm .

Fig. 13
Fig. 13

Dependence of optical loss in a waveguide-liquid core junction ( L j = 29   μm ) as a function of the refractive index of the liquid contained in the channel.

Fig. 14
Fig. 14

Experimental (dots) and simulated (curves) optical loss in waveguide-liquid core junctions of various lengths ( L j = 20 4000   μm ) at a 1.55   μm wavelength for a channel index of (a) 1.504 (index fluid) and (b) 1.477 (toluene).

Fig. 15
Fig. 15

(a) Ridge structure etched into the Ge-doped silica layer to form an optimized waveguide-microchannel coupler. Curved ridges serve to contain fluid and to make the device layout compact. (b) Fully fabricated device after the deposition and annealing of the BPSG layer.

Metrics