Abstract

Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors. However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jaenicke, "Tropospheric aerosols," in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed. (Academic, 1993), pp. 1-31.
  2. C. A. Primmerman, "Detection of Biological Agents," Lincoln Lab. J. 12, 3-32 (2000).
  3. L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, "Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics," Vib. Spectrosc. 26, 151-159 (2001).
    [Crossref]
  4. A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005).
    [Crossref]
  5. J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
    [Crossref] [PubMed]
  6. D. C. S. Beddows and H. H. Telle, "Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry," Spectrochim. Acta Part B 60, 1040-1059 (2005).
    [Crossref]
  7. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, "Laser-induced breakdown spectroscopy detection and classification of biological aerosols," Appl. Spectrosc. 57, 1207-1215 (2003).
    [Crossref] [PubMed]
  8. R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon," Atmos. Environ. 38, 1657-1672 (2004).
    [Crossref]
  9. A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, "Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy," Appl. Opt. 42, 6119-6132 (2003).
    [Crossref] [PubMed]
  10. T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, "Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy," J. Phys. Chem. B 108, 5477-5482 (2004).
    [Crossref]
  11. S. Morel, N. Leone, P. Adam, and J. Amouroux, "Detection of bacteria by time-resolved laser-induced breakdown spectroscopy," Appl. Opt. 42, 6184-6191 (2003).
    [Crossref] [PubMed]
  12. A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003).
    [Crossref] [PubMed]
  13. J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, "On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 56, 851-864 (2001).
    [Crossref]
  14. M. Z. Martin, M. D. Cheng, and R. C. Martin, "Aerosol measurement by laser-induced plasma technique: a review," Aerosol Sci. Technol. 31, 409-421 (1999).
    [Crossref]
  15. V. Hohreiter, A. J. Ball, and D. W. Hahn, "Effects of aerosols and laser cavity seeding on spectral and temporal stability of laser-induced plasmas: application to LIBS," J. Anal. At. Spectrom. 19, 1289-1294 (2004).
    [Crossref]
  16. R. C. Sullivan and K. A. Prather, "Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation," Anal. Chem. 77, 3861-3885 (2005).
    [Crossref] [PubMed]
  17. J. J. Zayhowski and C. Dill, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
    [Crossref] [PubMed]
  18. G. A. Lithgow and S. G. Buckley, "Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements," Spectrochim. Acta Part B 60, 1060-1069 (2005).
    [Crossref]
  19. G. A. Lithgow and S. G. Buckley, "Effects of focal volume and spatial inhomogeneity on uncertainty in single-aerosol laser-induced breakdown spectroscopy measurements," Appl. Phys. Lett. 87, 011501 (2005).
    [Crossref]
  20. G. Gould and A. Hurst, The Bacterial Spore (Academic 1969).
  21. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
    [Crossref]
  22. B. F. J. Manly, Multivariate Statistical Methods: A Primer (Chapman & Hall, 1986).
  23. P. B. Dixon and D. W. Hahn, "Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy," Anal. Chem. 77, 631-638 (2005).
    [Crossref] [PubMed]
  24. J. Scaffidi, S. M. Angel, and D. A. Cremers, "Emission enhancement mechanisms in dual-pulse LIBS," Anal. Chem. 78, 24-32 (2006).
    [Crossref] [PubMed]

2006 (1)

J. Scaffidi, S. M. Angel, and D. A. Cremers, "Emission enhancement mechanisms in dual-pulse LIBS," Anal. Chem. 78, 24-32 (2006).
[Crossref] [PubMed]

2005 (6)

P. B. Dixon and D. W. Hahn, "Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy," Anal. Chem. 77, 631-638 (2005).
[Crossref] [PubMed]

A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005).
[Crossref]

D. C. S. Beddows and H. H. Telle, "Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry," Spectrochim. Acta Part B 60, 1040-1059 (2005).
[Crossref]

R. C. Sullivan and K. A. Prather, "Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation," Anal. Chem. 77, 3861-3885 (2005).
[Crossref] [PubMed]

G. A. Lithgow and S. G. Buckley, "Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements," Spectrochim. Acta Part B 60, 1060-1069 (2005).
[Crossref]

G. A. Lithgow and S. G. Buckley, "Effects of focal volume and spatial inhomogeneity on uncertainty in single-aerosol laser-induced breakdown spectroscopy measurements," Appl. Phys. Lett. 87, 011501 (2005).
[Crossref]

2004 (3)

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, "Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy," J. Phys. Chem. B 108, 5477-5482 (2004).
[Crossref]

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon," Atmos. Environ. 38, 1657-1672 (2004).
[Crossref]

V. Hohreiter, A. J. Ball, and D. W. Hahn, "Effects of aerosols and laser cavity seeding on spectral and temporal stability of laser-induced plasmas: application to LIBS," J. Anal. At. Spectrom. 19, 1289-1294 (2004).
[Crossref]

2003 (4)

2001 (3)

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, "On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 56, 851-864 (2001).
[Crossref]

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, "Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics," Vib. Spectrosc. 26, 151-159 (2001).
[Crossref]

2000 (1)

C. A. Primmerman, "Detection of Biological Agents," Lincoln Lab. J. 12, 3-32 (2000).

1999 (2)

M. Z. Martin, M. D. Cheng, and R. C. Martin, "Aerosol measurement by laser-induced plasma technique: a review," Aerosol Sci. Technol. 31, 409-421 (1999).
[Crossref]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
[Crossref]

1994 (1)

Adam, P.

Amiel, C.

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, "Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics," Vib. Spectrosc. 26, 151-159 (2001).
[Crossref]

Amouroux, J.

Angel, S. M.

J. Scaffidi, S. M. Angel, and D. A. Cremers, "Emission enhancement mechanisms in dual-pulse LIBS," Anal. Chem. 78, 24-32 (2006).
[Crossref] [PubMed]

Ball, A. J.

V. Hohreiter, A. J. Ball, and D. W. Hahn, "Effects of aerosols and laser cavity seeding on spectral and temporal stability of laser-induced plasmas: application to LIBS," J. Anal. At. Spectrom. 19, 1289-1294 (2004).
[Crossref]

Beddows, D. C. S.

D. C. S. Beddows and H. H. Telle, "Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry," Spectrochim. Acta Part B 60, 1040-1059 (2005).
[Crossref]

A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, "Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy," Appl. Opt. 42, 6119-6132 (2003).
[Crossref] [PubMed]

Benner, W. H.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Boyain-Goitia, A. R.

Buckley, S. G.

G. A. Lithgow and S. G. Buckley, "Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements," Spectrochim. Acta Part B 60, 1060-1069 (2005).
[Crossref]

G. A. Lithgow and S. G. Buckley, "Effects of focal volume and spatial inhomogeneity on uncertainty in single-aerosol laser-induced breakdown spectroscopy measurements," Appl. Phys. Lett. 87, 011501 (2005).
[Crossref]

J. D. Hybl, G. A. Lithgow, and S. G. Buckley, "Laser-induced breakdown spectroscopy detection and classification of biological aerosols," Appl. Spectrosc. 57, 1207-1215 (2003).
[Crossref] [PubMed]

Carranza, J. E.

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, "On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 56, 851-864 (2001).
[Crossref]

Chang, R. K.

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon," Atmos. Environ. 38, 1657-1672 (2004).
[Crossref]

Cheng, M. D.

M. Z. Martin, M. D. Cheng, and R. C. Martin, "Aerosol measurement by laser-induced plasma technique: a review," Aerosol Sci. Technol. 31, 409-421 (1999).
[Crossref]

Cremers, D. A.

J. Scaffidi, S. M. Angel, and D. A. Cremers, "Emission enhancement mechanisms in dual-pulse LIBS," Anal. Chem. 78, 24-32 (2006).
[Crossref] [PubMed]

Davis, E. J.

A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005).
[Crossref]

DeLucia, F. C.

Dildine, N.

A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005).
[Crossref]

Dill, C.

Dixon, P. B.

P. B. Dixon and D. W. Hahn, "Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy," Anal. Chem. 77, 631-638 (2005).
[Crossref] [PubMed]

Drapala, E.

A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005).
[Crossref]

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, "On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 56, 851-864 (2001).
[Crossref]

Frank, M.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Gard, E. E.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Gould, G.

G. Gould and A. Hurst, The Bacterial Spore (Academic 1969).

Griffiths, B. C.

Hack, C. A.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Hahn, D. W.

P. B. Dixon and D. W. Hahn, "Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy," Anal. Chem. 77, 631-638 (2005).
[Crossref] [PubMed]

V. Hohreiter, A. J. Ball, and D. W. Hahn, "Effects of aerosols and laser cavity seeding on spectral and temporal stability of laser-induced plasmas: application to LIBS," J. Anal. At. Spectrom. 19, 1289-1294 (2004).
[Crossref]

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, "On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 56, 851-864 (2001).
[Crossref]

Hill, S. C.

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon," Atmos. Environ. 38, 1657-1672 (2004).
[Crossref]

Hohreiter, V.

V. Hohreiter, A. J. Ball, and D. W. Hahn, "Effects of aerosols and laser cavity seeding on spectral and temporal stability of laser-induced plasmas: application to LIBS," J. Anal. At. Spectrom. 19, 1289-1294 (2004).
[Crossref]

Horn, J. M.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Hurst, A.

G. Gould and A. Hurst, The Bacterial Spore (Academic 1969).

Hybl, J. D.

Jaenicke, R.

R. Jaenicke, "Tropospheric aerosols," in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed. (Academic, 1993), pp. 1-31.

Jeys, T. H.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
[Crossref]

Kim, T.

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, "Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy," J. Phys. Chem. B 108, 5477-5482 (2004).
[Crossref]

Labov, S. E.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Langry, K.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Laucks, M. L.

A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005).
[Crossref]

Leone, N.

Lin, C. T.

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, "Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy," J. Phys. Chem. B 108, 5477-5482 (2004).
[Crossref]

Lithgow, G. A.

G. A. Lithgow and S. G. Buckley, "Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements," Spectrochim. Acta Part B 60, 1060-1069 (2005).
[Crossref]

G. A. Lithgow and S. G. Buckley, "Effects of focal volume and spatial inhomogeneity on uncertainty in single-aerosol laser-induced breakdown spectroscopy measurements," Appl. Phys. Lett. 87, 011501 (2005).
[Crossref]

J. D. Hybl, G. A. Lithgow, and S. G. Buckley, "Laser-induced breakdown spectroscopy detection and classification of biological aerosols," Appl. Spectrosc. 57, 1207-1215 (2003).
[Crossref] [PubMed]

Magnotta, F.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Manly, B. F. J.

B. F. J. Manly, Multivariate Statistical Methods: A Primer (Chapman & Hall, 1986).

Mariey, L.

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, "Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics," Vib. Spectrosc. 26, 151-159 (2001).
[Crossref]

Martin, M. Z.

M. Z. Martin, M. D. Cheng, and R. C. Martin, "Aerosol measurement by laser-induced plasma technique: a review," Aerosol Sci. Technol. 31, 409-421 (1999).
[Crossref]

Martin, R. C.

M. Z. Martin, M. D. Cheng, and R. C. Martin, "Aerosol measurement by laser-induced plasma technique: a review," Aerosol Sci. Technol. 31, 409-421 (1999).
[Crossref]

McNesby, K. L.

Miziolek, A. W.

Morel, S.

Newbury, N. R.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
[Crossref]

Pan, Y. L.

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon," Atmos. Environ. 38, 1657-1672 (2004).
[Crossref]

Pinnick, R. G.

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon," Atmos. Environ. 38, 1657-1672 (2004).
[Crossref]

Prather, K. A.

R. C. Sullivan and K. A. Prather, "Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation," Anal. Chem. 77, 3861-3885 (2005).
[Crossref] [PubMed]

Primmerman, C. A.

C. A. Primmerman, "Detection of Biological Agents," Lincoln Lab. J. 12, 3-32 (2000).

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
[Crossref]

Reyes, F. L.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
[Crossref]

Rowe, G. S.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
[Crossref]

Samuels, A. C.

Sanchez, A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
[Crossref]

Scaffidi, J.

J. Scaffidi, S. M. Angel, and D. A. Cremers, "Emission enhancement mechanisms in dual-pulse LIBS," Anal. Chem. 78, 24-32 (2006).
[Crossref] [PubMed]

Sengupta, A.

A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005).
[Crossref]

Signolle, J. P.

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, "Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics," Vib. Spectrosc. 26, 151-159 (2001).
[Crossref]

Specht, Z. G.

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, "Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy," J. Phys. Chem. B 108, 5477-5482 (2004).
[Crossref]

Stanion, K. A.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Sullivan, R. C.

R. C. Sullivan and K. A. Prather, "Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation," Anal. Chem. 77, 3861-3885 (2005).
[Crossref] [PubMed]

Telle, H. H.

D. C. S. Beddows and H. H. Telle, "Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry," Spectrochim. Acta Part B 60, 1040-1059 (2005).
[Crossref]

A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, "Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy," Appl. Opt. 42, 6119-6132 (2003).
[Crossref] [PubMed]

Travert, J.

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, "Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics," Vib. Spectrosc. 26, 151-159 (2001).
[Crossref]

Ullom, J. N.

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

Vary, P. S.

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, "Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy," J. Phys. Chem. B 108, 5477-5482 (2004).
[Crossref]

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, "On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 56, 851-864 (2001).
[Crossref]

Zayhowski, J. J.

Aerosol Sci. Technol. (1)

M. Z. Martin, M. D. Cheng, and R. C. Martin, "Aerosol measurement by laser-induced plasma technique: a review," Aerosol Sci. Technol. 31, 409-421 (1999).
[Crossref]

Anal. Chem. (4)

R. C. Sullivan and K. A. Prather, "Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation," Anal. Chem. 77, 3861-3885 (2005).
[Crossref] [PubMed]

J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001).
[Crossref] [PubMed]

P. B. Dixon and D. W. Hahn, "Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy," Anal. Chem. 77, 631-638 (2005).
[Crossref] [PubMed]

J. Scaffidi, S. M. Angel, and D. A. Cremers, "Emission enhancement mechanisms in dual-pulse LIBS," Anal. Chem. 78, 24-32 (2006).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

G. A. Lithgow and S. G. Buckley, "Effects of focal volume and spatial inhomogeneity on uncertainty in single-aerosol laser-induced breakdown spectroscopy measurements," Appl. Phys. Lett. 87, 011501 (2005).
[Crossref]

Appl. Spectrosc. (1)

Atmos. Environ. (1)

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon," Atmos. Environ. 38, 1657-1672 (2004).
[Crossref]

Field Anal. Chem. Technol. (1)

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999).
[Crossref]

J. Aerosol Sci. (1)

A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005).
[Crossref]

J. Anal. At. Spectrom. (1)

V. Hohreiter, A. J. Ball, and D. W. Hahn, "Effects of aerosols and laser cavity seeding on spectral and temporal stability of laser-induced plasmas: application to LIBS," J. Anal. At. Spectrom. 19, 1289-1294 (2004).
[Crossref]

J. Phys. Chem. B (1)

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, "Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy," J. Phys. Chem. B 108, 5477-5482 (2004).
[Crossref]

Lincoln Lab. J. (1)

C. A. Primmerman, "Detection of Biological Agents," Lincoln Lab. J. 12, 3-32 (2000).

Opt. Lett. (1)

Spectrochim. Acta (1)

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, "On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 56, 851-864 (2001).
[Crossref]

Spectrochim. Acta Part B (2)

G. A. Lithgow and S. G. Buckley, "Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements," Spectrochim. Acta Part B 60, 1060-1069 (2005).
[Crossref]

D. C. S. Beddows and H. H. Telle, "Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry," Spectrochim. Acta Part B 60, 1040-1059 (2005).
[Crossref]

Vib. Spectrosc. (1)

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, "Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics," Vib. Spectrosc. 26, 151-159 (2001).
[Crossref]

Other (3)

R. Jaenicke, "Tropospheric aerosols," in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed. (Academic, 1993), pp. 1-31.

B. F. J. Manly, Multivariate Statistical Methods: A Primer (Chapman & Hall, 1986).

G. Gould and A. Hurst, The Bacterial Spore (Academic 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

LIF-LIBS instrument diagram. L1, 1 in. ( 2.54 c m ) optic, f = 50   mm (UVFS); L2, 1 in. ( 2.54 c m ) achromat, f = 50   mm (UVFS∕CaF2 doublet); LA1, 2 × beam expander (AR1064); SF1, 0 .5 × 0 .75   mm aperture; SF2, variable aperture; F1, Schott WG295 (HR266); F2, Schott WG295; PR1, parent f = 38.1   mm , 90° off-axis parabolic reflector (protected Al coating); PR2, parent f = 50.8   mm , 90° off-axis parabolic reflector (protected Al coating); UV laser, λ = 266   nm , 10 kHz PRF, 500 ps pulse duration, 1   μJ / pulse microchip laser; and LIBS laser, λ = 1064   nm , 50   mJ / pulse , 7 ns pulse duration Nd:YAG.

Fig. 2
Fig. 2

Sample flow cell. The left-hand side of the figure shows a schematic of the sample cell. The aerosol stream enters from the top and is held collimated by the backing pressure provided by the eight inlet purges. All air exits through a common orifice on the bottom. The ratio of total purge air flow to sample flow is 4:1. The picture on the right-hand side shows a stream of water particles illuminated by a He–Ne laser. The picture shows good collimation of the aerosol stream and for reference shows the arrangement of the UV laser and LIBS plasma relative to the sample aerosol stream.

Fig. 3
Fig. 3

Representative size distributions of test Bg aerosols disseminated with the droplet generator. Particle size distributions were measured using an aerodynamic particle sizer.

Fig. 4
Fig. 4

Single-particle LIBS spectrum. a. Raw LIBS spectrum of a single particle of Bg taken from a dissemination with a mean diameter of 3   μm . For reference, a 3   μm particle of Bg contains a maximum of 50 individual spores (this neglects packing efficiency and any impurities within the particle). The plasma background is overlaid for reference. Since 300 500   nm light is imaged (pixels 1–1024) onto a separate section of the CCD from the 500 800   nm light (pixels 1025–2048), the raw spectrum is initially read out as 2048 pixels. b. Background-corrected spectrum of the particle. For simplicity, the sections of the spectrum with an elemental signal are extracted and plotted against a single wavelength axis.

Fig. 5
Fig. 5

Single-particle spectra of biological agent simulants, Bg, Pa, and Ov. All the spectra were taken from aerosols with mean aerodynamic particle diameters of 3   μm . The bacterial spore exhibits measurable Ca, Na, and K signals while the other samples are dominated by Na and K.

Fig. 6
Fig. 6

Effect of washing on a Bg sample. Relative levels of Ca, Na, and K are shown before and after each of two washings with plasma-grade water. The height of each bar represents the average value of that element from a 1000 particle measurement of the Bg sample, and the error bars are drawn to represent one standard deviation. The electron micrographs to the right of the graph give a visual indication of how much residual growth material and impurity is present at each washing stage.

Fig. 7
Fig. 7

Description of outdoor aerosol particles. a. Histogram of the measured FL∕EL ratio for all particles measured outdoors. Overlaid are laboratory measurements of biological-agent simulants. b. Scatterplot of outdoor aerosols, Ov, and Pa in terms of Na signal strength and Na∕K ratio. c. A similar scatterplot illustrating the overlap of Bg with the outdoor aerosol particles in terms of Ca and K.

Fig. 8
Fig. 8

Construction of a ROC curve. To construct the ROC curve, the signature of each measured simulant and background particle is converted into a single detection statistic, the Mahalanobis distance. The values for the Mahalanobis distance form target (Bg) and clutter (background) distributions. A threshold is swept across the distribution, at each threshold value, the cumulative probability (solid curve = Bg and dashed curve = clutter) of classifying a particle correctly as a simulant or incorrectly classifying a background particle as a simulant is computed. These values can then be plotted as a ROC curve.

Fig. 9
Fig. 9

ROC curves for detecting a. Bg, b. Pa, and c. Ov from the outdoor, background particles (collected over 10 days). The dashed curve shows discrimination based only on FL∕EL ratio and the solid curve shows discrimination when LIBS data are included.

Fig. 10
Fig. 10

Toxinlike anomaly in background. a. The BAWS toxin-count rate as a function of time. Between 10:30 and 11:00 a.m., a toxinlike (with respect to fluorescence) aerosol appears in the background. b. The LIF-LIBS instrument sees the same aerosol and, when using only the elastic scatter and fluorescence data, it also classifies the aerosol as a toxin. c. When LIBS is included, the event is suppressed because the predominant element in the aerosol is Ca, whereas toxins are mainly composed of Na.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

signal ( λ ) = [ I PART ( λ ) s I BACK ( λ ) ] s I BACK ( λ ) ,
D 2 = ( x μ ) T Γ 1 ( x μ ) ,

Metrics