Abstract

A new solid immersion mirror called the planoellipsoidal (PE) solid immersion mirror (SIM) for the near-field optical storage is proposed and developed. The PE SIM has a small aperture on the apex of the ellipsoidal surface. The intensity distribution of the transmitted field is calculated by using the vector diffraction theory. Compared with a conventional solid immersion lens (SIL), the proposed PE SIM has the following features. A PE SIM replaces three optical elements of the collimator, objective, and SIL in a conventional SIL optical storage system, so that the optical system equipped with the PE SIM is not only simple in its assembly but is also effective in making an optical head unit. The PE SIM obtains light from a point light source and focuses it directly on the recording layer, which may be useful for a compact optical data storage system. The convex ellipsoidal surface of the PE SIM can reduce the risk of the SIM touching the surface of the recording medium. In addition, the spreading of the spot size with the increase of distance is very small in the PE SIM.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
    [CrossRef]
  2. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  3. B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  4. I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997).
    [CrossRef] [PubMed]
  5. Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
    [CrossRef]
  6. Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
    [CrossRef]
  7. Y. Zhang, "Design of high-performance supersphere solid immersion lens," Appl. Opt. 45, 4540-4546 (2006).
    [CrossRef] [PubMed]
  8. Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
    [CrossRef]
  9. F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).
  10. T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
    [CrossRef]
  11. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter wavelength," Opt. Express 13, 7189-7197 (2005).
    [CrossRef] [PubMed]
  12. C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, "Near-field optical recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).
    [CrossRef]
  13. C. Peng, C. Mihalcea, K. Pelhos, and W. A. Challener, "Focusing characteristics of a planar solid-immersion mirror," Appl. Opt. 45, 1785-1793 (2006).
    [CrossRef] [PubMed]
  14. H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
    [CrossRef]
  15. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
    [CrossRef]
  16. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
    [CrossRef]

2006 (3)

2005 (2)

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef] [PubMed]

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, "Near-field optical recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

2004 (2)

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

2003 (1)

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
[CrossRef]

2002 (1)

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

2001 (1)

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

1997 (1)

1994 (1)

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

1992 (1)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

1990 (1)

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Balistreri, M. L.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Büchel, D.

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, "Near-field optical recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

Challener, W. A.

Chang, C.-H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Chen, J.

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Gage, E. C.

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, "Near-field optical recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Hatano, H.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Hayashi, S.

Helseth, L. E.

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Hendriks, B. H.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

Hoshino, T.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Ichimura, I.

Jung, K.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
[CrossRef]

Kino, G. S.

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Kwon, H.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
[CrossRef]

Lee, J. I.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

Mamin, H. J.

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Mihalcea, C.

Ogura, K.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Padiy, A. V.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

Park, N.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
[CrossRef]

Park, Y.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
[CrossRef]

Pelhos, K.

Peng, C.

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Ruger, D.

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Sakata, T.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Song, T.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Ueda, H.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Urbach, H. P.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

van der Aa, M. A.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

van der Mark, M. B.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

Verschuren, C. A.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Xiao, H.

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Ye, X.

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

Yoon, Y.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
[CrossRef]

Zhang, Y.

Y. Zhang, "Design of high-performance supersphere solid immersion lens," Appl. Opt. 45, 4540-4546 (2006).
[CrossRef] [PubMed]

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Zheng, C.

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Zijp, F.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

Zou, Y.

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, "Near-field optical recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, "Aspherical solid immersion lens of integrated optical head for near-field recording," Jpn. J. Appl. Phys. Part 1 12, 1082-1089 (2003).
[CrossRef]

New J. Phys. (1)

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Opt. Commun. (1)

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Opt. Express (1)

Opt. Rev. (1)

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Optik (1)

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Other (1)

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. Hendriks, M. L. Balistreri, H. P. Urbach, M. A. van der Aa, and A. V. Padiy, "Near-field read-out of a 50 GB first-surface disc with NA = 1.9 and a proposal for a cover-layer-incident, dual-layer near-field system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380,209-223 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) (a) Schematic of a PE SIM. (b) Focusing of light and dimension parameters of the developed PE SIM.

Fig. 2
Fig. 2

(Color online) Normalized intensity of the PE SIM in the z = 0 plane. The red and green lines are the cases with and without the solid immersion medium, respectively.

Fig. 3
Fig. 3

(Color online) (a) FWHM of spot and (b) intensity of spot as a function of the structure parameter δ r for three different values of δ d when n = 2 , n = 1 , n f = 1.44 + 5.23 i , and h = λ / 4 .

Fig. 4
Fig. 4

Convergence angle incident on the apex zone of the PE SIM as a function of δ r / δ d when n = 2 , n = 1 , n f = 1.44 + 5.23 i , and h = λ / 4 . The blue line represents the critical angle on the SIM–sample interface.

Fig. 5
Fig. 5

(Color online) (a) Evolution of intensity(z) of the spot relative to intensity(0) in the focal plane. (b) Evolution of FWHM(z) of the spot relative to FWHM(0) in the focal plane. The red curve is the case for a PE SIM system of n = 2 , where the calculation parameters are n = 2 , n = 1 , n f = 1.44 + 5.23 i , and h = λ / 4 . The black curve is the case for a hemisphere SIL system, where the refractive index of the SIL is 2 and the convergence angle of the objective is 60°.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

β = arctan ( δ r / δ d ) ,
α = arctan { 4 δ d δ r ( 1 δ d ) [ δ r 2 + ( 2 3 δ d ) 2 + ( 1 2 δ d ) ( 2 3 δ d ) ] 4 δ d ( 1 δ d ) ( 2 3 δ d ) [ δ r 2 + ( 2 3 δ d ) 2 ( 1 2 δ d ) ( 2 3 δ d ) ] 2 δ r 2 ( 1 2 δ d ) } .
f ( θ ) = cos θ .
E ρ ( ρ , z ) = i α β t 1 t 2 r 1 r 2 f ( θ ) cos θ sin θ J 1 ( i k n ρ sin θ ) × exp ( i k z cos θ ) d θ ,
E z ( ρ , z ) = α β t 1 t 2 r 1 r 2 f ( θ ) sin θ sin θ J 0 ( i k n ρ sin θ ) × exp ( i k z cos θ ) d θ ,
x = r 2 a 3 d ( z + a 2 d ) .
z 2 a 2 + x 2 b 2 = 1.
z E = 4 a d ( a d ) ( 2 a 3 d ) r 2 + ( 2 d 3 d ) 2 a 2 r 2 ( a 2 d ) 4 d ( a d ) ( 2 a 3 d ) 2 + a 2 r 2 ,
x E = r 2 a 3 d 4 d ( a d ) ( 2 a 3 d ) [ ( a 2 d ) ( 2 a 3 d ) + a r 2 + ( 2 a 3 d ) 2 ] 4 d ( a d ) ( 2 a 3 d ) 2 + a 2 r 2 .
x = x E z E ( a 2 d ) [ z ( a 2 d ) ] .
k = tan α = x E z E ( a 2 d ) .
α = arctan { 4 r d ( a d ) [ a r 2 + ( 2 a 3 d ) 2 + ( a 2 d ) ( 2 a 3 d ) ] 4 d ( a d ) ( 2 a 3 d ) [ a r 2 + ( 2 a 3 d ) 2 ( a 2 d ) ( 2 a 3 d ) ] 2 a 2 r 2 ( a 2 d ) } .

Metrics