Abstract

We present a method for glucose prediction from mid-IR spectra by independent component analysis (ICA). This method is able to identify pure, or individual, absorption spectra of constituent components from the mixture spectra without a priori knowledge of the mixture. This method was tested with a two-component system consisting of an aqueous solution of both glucose and sucrose, which exhibit distinct but closely overlapped spectra. ICA combined with principal component analysis was able to identify a spectrum for each component, the correct number of components, and the concentrations of the components in the mixture. This method does not need a calibration process and is advantageous in noninvasive glucose monitoring since expensive and time-consuming clinical tests for data calibration are not required.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Amato, "Race quickens for non-stick blood monitoring technology," Science 258, 892-893 (1992).
    [CrossRef]
  2. R. McNichols and G. L. Cote, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
    [CrossRef] [PubMed]
  3. H. Martens and T. Naes, Multivariate Calibration (Wiley, 1989).
  4. M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).
  5. H. M. Heise, R. Marbach, T. Koschinsky, and F. A. Gries, "Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis," Appl. Spectrosc. 48, 85-95 (1994).
    [CrossRef]
  6. S. Pan, H. Chung, M. A. Arnold, and G. W. Small, "Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides," Anal. Chem. 68, 1124-1135 (1996).
    [CrossRef] [PubMed]
  7. Y.-J. Kim, S. Hahn, and G. Yoon, "Determination of glucose in whole blood samples by mid-infrared spectroscopy," Appl. Opt. 42, 745-749 (2003).
    [CrossRef] [PubMed]
  8. S. Hahn, G. Yoon, G. Kim, and S.-H. Park, "Reagentless determination of human serum components using infrared absorption spectroscopy," J. Opt. Soc. Korea 7, 240-244 (2003).
    [CrossRef]
  9. K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, "Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy," J. Biomed. Opt. 11, 014022-1-014022-7 (2006).
    [CrossRef]
  10. M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, "Component selectivity analysis of multivariate calibration models from near-infrared spectra," Anal. Chem. 76, 2583-2590 (2004).
    [CrossRef] [PubMed]
  11. A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, "Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy," Anal. Chem. 77, 4587-4594 (2005).
    [CrossRef] [PubMed]
  12. A. Lorber and B. R. Kowalski, "The effect of interferences and calibration design on accuracy: implications for sensor and sample selection," J. Chemom. 2, 67-79 (1988).
    [CrossRef]
  13. E. Sanchez and B. R. Kowalski, "Tensorial calibration: I. First-order calibration," J. Chemom. 2, 247-263 (1988).
    [CrossRef]
  14. A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley, 2001).
  15. H. Farid and E. H. Adelson, "Separating reflections from images by use of independent component analysis," J. Opt. Soc. Am. A 16, 2136-2145 (1999).
    [CrossRef]
  16. N. Tsumura, H. Haneishi, and Y. Miyake, "Independent-component analysis of skin color image," J. Opt. Soc. Am. A 16, 2169-2176 (1999).
    [CrossRef]
  17. L. De Lathauwer, B. De Moor, and J. Vanderwalle, "An introduction to independent component analysis," J. Chemom. 14, 123-149 (2000).
    [CrossRef]
  18. J. Chen and X. Z. Wang, "A new approach to near-infrared spectral data analysis using independent component analysis," J. Chem. Inf. Comput. Sci. 41, 992-1001 (2001).
    [CrossRef] [PubMed]

2006 (1)

K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, "Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy," J. Biomed. Opt. 11, 014022-1-014022-7 (2006).
[CrossRef]

2005 (1)

A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, "Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy," Anal. Chem. 77, 4587-4594 (2005).
[CrossRef] [PubMed]

2004 (1)

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, "Component selectivity analysis of multivariate calibration models from near-infrared spectra," Anal. Chem. 76, 2583-2590 (2004).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

J. Chen and X. Z. Wang, "A new approach to near-infrared spectral data analysis using independent component analysis," J. Chem. Inf. Comput. Sci. 41, 992-1001 (2001).
[CrossRef] [PubMed]

2000 (2)

L. De Lathauwer, B. De Moor, and J. Vanderwalle, "An introduction to independent component analysis," J. Chemom. 14, 123-149 (2000).
[CrossRef]

R. McNichols and G. L. Cote, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
[CrossRef] [PubMed]

1999 (2)

1996 (1)

S. Pan, H. Chung, M. A. Arnold, and G. W. Small, "Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides," Anal. Chem. 68, 1124-1135 (1996).
[CrossRef] [PubMed]

1994 (1)

1992 (2)

I. Amato, "Race quickens for non-stick blood monitoring technology," Science 258, 892-893 (1992).
[CrossRef]

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

1988 (2)

A. Lorber and B. R. Kowalski, "The effect of interferences and calibration design on accuracy: implications for sensor and sample selection," J. Chemom. 2, 67-79 (1988).
[CrossRef]

E. Sanchez and B. R. Kowalski, "Tensorial calibration: I. First-order calibration," J. Chemom. 2, 247-263 (1988).
[CrossRef]

Adelson, E. H.

Amato, I.

I. Amato, "Race quickens for non-stick blood monitoring technology," Science 258, 892-893 (1992).
[CrossRef]

Amerov, A. K.

A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, "Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy," Anal. Chem. 77, 4587-4594 (2005).
[CrossRef] [PubMed]

Arnold, M. A.

A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, "Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy," Anal. Chem. 77, 4587-4594 (2005).
[CrossRef] [PubMed]

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, "Component selectivity analysis of multivariate calibration models from near-infrared spectra," Anal. Chem. 76, 2583-2590 (2004).
[CrossRef] [PubMed]

S. Pan, H. Chung, M. A. Arnold, and G. W. Small, "Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides," Anal. Chem. 68, 1124-1135 (1996).
[CrossRef] [PubMed]

Chen, J.

A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, "Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy," Anal. Chem. 77, 4587-4594 (2005).
[CrossRef] [PubMed]

J. Chen and X. Z. Wang, "A new approach to near-infrared spectral data analysis using independent component analysis," J. Chem. Inf. Comput. Sci. 41, 992-1001 (2001).
[CrossRef] [PubMed]

Chung, H.

S. Pan, H. Chung, M. A. Arnold, and G. W. Small, "Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides," Anal. Chem. 68, 1124-1135 (1996).
[CrossRef] [PubMed]

Cote, G. L.

R. McNichols and G. L. Cote, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
[CrossRef] [PubMed]

De Lathauwer, L.

L. De Lathauwer, B. De Moor, and J. Vanderwalle, "An introduction to independent component analysis," J. Chemom. 14, 123-149 (2000).
[CrossRef]

De Moor, B.

L. De Lathauwer, B. De Moor, and J. Vanderwalle, "An introduction to independent component analysis," J. Chemom. 14, 123-149 (2000).
[CrossRef]

Eaton, R. P.

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

Farid, H.

Gries, F. A.

Haaland, D. M.

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

Hahn, S.

Haneishi, H.

Heise, H. M.

Hwang, I. D.

K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, "Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy," J. Biomed. Opt. 11, 014022-1-014022-7 (2006).
[CrossRef]

Hyvarinen, A.

A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley, 2001).

Jeon, K. J.

K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, "Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy," J. Biomed. Opt. 11, 014022-1-014022-7 (2006).
[CrossRef]

Karhunen, J.

A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley, 2001).

Kim, G.

Kim, Y.-J.

Koepp, G. W.

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

Koschinsky, T.

Kowalski, B. R.

A. Lorber and B. R. Kowalski, "The effect of interferences and calibration design on accuracy: implications for sensor and sample selection," J. Chemom. 2, 67-79 (1988).
[CrossRef]

E. Sanchez and B. R. Kowalski, "Tensorial calibration: I. First-order calibration," J. Chemom. 2, 247-263 (1988).
[CrossRef]

Lorber, A.

A. Lorber and B. R. Kowalski, "The effect of interferences and calibration design on accuracy: implications for sensor and sample selection," J. Chemom. 2, 67-79 (1988).
[CrossRef]

Marbach, R.

Martens, H.

H. Martens and T. Naes, Multivariate Calibration (Wiley, 1989).

McNichols, R.

R. McNichols and G. L. Cote, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
[CrossRef] [PubMed]

Miyake, Y.

Murhammer, D. W.

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, "Component selectivity analysis of multivariate calibration models from near-infrared spectra," Anal. Chem. 76, 2583-2590 (2004).
[CrossRef] [PubMed]

Naes, T.

H. Martens and T. Naes, Multivariate Calibration (Wiley, 1989).

Oja, E.

A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley, 2001).

Pan, S.

S. Pan, H. Chung, M. A. Arnold, and G. W. Small, "Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides," Anal. Chem. 68, 1124-1135 (1996).
[CrossRef] [PubMed]

Park, S.-H.

Qui, J.

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, "Component selectivity analysis of multivariate calibration models from near-infrared spectra," Anal. Chem. 76, 2583-2590 (2004).
[CrossRef] [PubMed]

Robinson, P. L.

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

Robinsons, M. R.

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

Sanchez, E.

E. Sanchez and B. R. Kowalski, "Tensorial calibration: I. First-order calibration," J. Chemom. 2, 247-263 (1988).
[CrossRef]

Small, G. W.

A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, "Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy," Anal. Chem. 77, 4587-4594 (2005).
[CrossRef] [PubMed]

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, "Component selectivity analysis of multivariate calibration models from near-infrared spectra," Anal. Chem. 76, 2583-2590 (2004).
[CrossRef] [PubMed]

S. Pan, H. Chung, M. A. Arnold, and G. W. Small, "Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides," Anal. Chem. 68, 1124-1135 (1996).
[CrossRef] [PubMed]

Stallard, B. R.

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

Thomas, E. V.

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

Tsumura, N.

Vanderwalle, J.

L. De Lathauwer, B. De Moor, and J. Vanderwalle, "An introduction to independent component analysis," J. Chemom. 14, 123-149 (2000).
[CrossRef]

Wang, X. Z.

J. Chen and X. Z. Wang, "A new approach to near-infrared spectral data analysis using independent component analysis," J. Chem. Inf. Comput. Sci. 41, 992-1001 (2001).
[CrossRef] [PubMed]

Xiang, D.

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, "Component selectivity analysis of multivariate calibration models from near-infrared spectra," Anal. Chem. 76, 2583-2590 (2004).
[CrossRef] [PubMed]

Yoon, G.

Anal. Chem. (3)

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, "Component selectivity analysis of multivariate calibration models from near-infrared spectra," Anal. Chem. 76, 2583-2590 (2004).
[CrossRef] [PubMed]

A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, "Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy," Anal. Chem. 77, 4587-4594 (2005).
[CrossRef] [PubMed]

S. Pan, H. Chung, M. A. Arnold, and G. W. Small, "Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides," Anal. Chem. 68, 1124-1135 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Clin. Chem. (1)

M. R. Robinsons, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, "Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation," Clin. Chem. 38, 1618-1622 (1992).

J. Biomed. Opt. (2)

K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, "Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy," J. Biomed. Opt. 11, 014022-1-014022-7 (2006).
[CrossRef]

R. McNichols and G. L. Cote, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000).
[CrossRef] [PubMed]

J. Chem. Inf. Comput. Sci. (1)

J. Chen and X. Z. Wang, "A new approach to near-infrared spectral data analysis using independent component analysis," J. Chem. Inf. Comput. Sci. 41, 992-1001 (2001).
[CrossRef] [PubMed]

J. Chemom. (3)

L. De Lathauwer, B. De Moor, and J. Vanderwalle, "An introduction to independent component analysis," J. Chemom. 14, 123-149 (2000).
[CrossRef]

A. Lorber and B. R. Kowalski, "The effect of interferences and calibration design on accuracy: implications for sensor and sample selection," J. Chemom. 2, 67-79 (1988).
[CrossRef]

E. Sanchez and B. R. Kowalski, "Tensorial calibration: I. First-order calibration," J. Chemom. 2, 247-263 (1988).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Korea (1)

Science (1)

I. Amato, "Race quickens for non-stick blood monitoring technology," Science 258, 892-893 (1992).
[CrossRef]

Other (2)

H. Martens and T. Naes, Multivariate Calibration (Wiley, 1989).

A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Flow chart of ICA.

Fig. 2
Fig. 2

Pure, or individual, water-subtracted absorption profiles of glucose (G) and sucrose (S).

Fig. 3
Fig. 3

(a) Total of 100 simulated spectra of the mixture. (b) Only five spectra reveal the individual traces. Random noise of 10:1 signal-to-noise ratio was added into the pure spectra to simulate a practical situation.

Fig. 4
Fig. 4

(Color online) Measured 25 mid-IR spectra for the mixtures of glucose and sucrose. Water absorption was subtracted to enhance the absorption profile of each component.

Fig. 5
Fig. 5

(Color online) Extracted pure spectra by the ICA method using the simulated spectra in Fig. 3. G represents glucose and S represents sucrose. Because of added random noise in the simulated spectra, pure component spectra extracted from the ICA method contain some random-noise-like signals.

Fig. 6
Fig. 6

Scatter plot for the reference concentrations and independent components (ICs) from simulated spectra. IC1 shows a linear relationship with sucrose concentrations and IC2 with glucose.

Fig. 7
Fig. 7

(Color online) Extracted pure component spectra from measured IR spectra of 25 samples shown in Fig. 4. Pure and ICA represent the pure component absorption spectrum and the ICA method extracted absorption spectrum, respectively.

Fig. 8
Fig. 8

Scatter plot for the reference concentrations and independent components (ICs) from measured mid-IR spectra.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A λ n = m 1 λ c 1 n + m 2 λ c 2 n .
A = MC ,
A = USV t .
M = usv t .
A = MC = usv t C ,
= factor score = ( US ) V t .
M = usv t = USv t = factor v t ,
C = ( v t ) - 1 score .
p y ( y ) = p ( y | x ) = p ( x , y ) p x ( x ) or p ( x , y ) = p x ( x ) p y ( y ) ,
cov ( x , y ) = E ( [ x - E ( x ) ] [ y - E ( y ) ] ) = E ( x y - x E ( y ) - y E ( x ) + E ( x ) E ( y ) ) = E ( x y ) - E ( x ) E ( y ) = 0.
score = W IC .
X = A scores = A W IC .
M = factor W .

Metrics