Abstract

The speckle pattern fluctuation in the leaf of a plant is investigated by using speckle correlation photography. The speckle correlation method is used to extract the amount of speckle pattern fluctuations. The speckle pattern fluctuations are related to the water content of the sap, which is in the veinous structure of a leaf. The speed of sap flow in veins is obtained by this method.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Swanson, "A thermal flowmeter for estimating the rate of xylem sap ascent in trees," in Flow, Its Measurement and Control in Science and Industry (Instrument Society of America, 1975), Vol. 1, pp. 647-652.
  2. Y. M. Kim and S. J. Lee, "Measurement of sap flow inside xylem vessels using x-ray micro imaging technique," KSME Int. J. 27, 1174-1181 (2003).
  3. T. W. J. Scheenen, D. van Dusschoten, P. A. de Jager, and H. Van As, "Quantification of water transport in plants with NMR imaging," J. Exp. Bot. 51, 1751-1759 (2000).
    [CrossRef] [PubMed]
  4. J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
    [CrossRef]
  5. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
    [CrossRef] [PubMed]
  6. C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
    [CrossRef] [PubMed]
  7. Z. Xu, C. Joenathan, and B. M. Khorana, "Temporal and spatial properties of the time- varying speckles of botanical specimens," Opt. Eng. 34, 1487-1502 (1995).
    [CrossRef]

2004

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

2003

Y. M. Kim and S. J. Lee, "Measurement of sap flow inside xylem vessels using x-ray micro imaging technique," KSME Int. J. 27, 1174-1181 (2003).

2000

T. W. J. Scheenen, D. van Dusschoten, P. A. de Jager, and H. Van As, "Quantification of water transport in plants with NMR imaging," J. Exp. Bot. 51, 1751-1759 (2000).
[CrossRef] [PubMed]

1996

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

1995

Z. Xu, C. Joenathan, and B. M. Khorana, "Temporal and spatial properties of the time- varying speckles of botanical specimens," Opt. Eng. 34, 1487-1502 (1995).
[CrossRef]

Ayata, C.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Boas, D. A.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

Cheng, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

de Jager, P. A.

T. W. J. Scheenen, D. van Dusschoten, P. A. de Jager, and H. Van As, "Quantification of water transport in plants with NMR imaging," J. Exp. Bot. 51, 1751-1759 (2000).
[CrossRef] [PubMed]

Dunn, A. K.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Gong, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Gursoy-Özdemir, Y.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Huang, Z.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Joenathan, C.

Z. Xu, C. Joenathan, and B. M. Khorana, "Temporal and spatial properties of the time- varying speckles of botanical specimens," Opt. Eng. 34, 1487-1502 (1995).
[CrossRef]

Khorana, B. M.

Z. Xu, C. Joenathan, and B. M. Khorana, "Temporal and spatial properties of the time- varying speckles of botanical specimens," Opt. Eng. 34, 1487-1502 (1995).
[CrossRef]

Kim, Y. M.

Y. M. Kim and S. J. Lee, "Measurement of sap flow inside xylem vessels using x-ray micro imaging technique," KSME Int. J. 27, 1174-1181 (2003).

Lee, S. J.

Y. M. Kim and S. J. Lee, "Measurement of sap flow inside xylem vessels using x-ray micro imaging technique," KSME Int. J. 27, 1174-1181 (2003).

Liu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Lu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Luo, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Moskowitz, M. A.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Scheenen, T. W. J.

T. W. J. Scheenen, D. van Dusschoten, P. A. de Jager, and H. Van As, "Quantification of water transport in plants with NMR imaging," J. Exp. Bot. 51, 1751-1759 (2000).
[CrossRef] [PubMed]

Swanson, R. H.

R. H. Swanson, "A thermal flowmeter for estimating the rate of xylem sap ascent in trees," in Flow, Its Measurement and Control in Science and Industry (Instrument Society of America, 1975), Vol. 1, pp. 647-652.

Van As, H.

T. W. J. Scheenen, D. van Dusschoten, P. A. de Jager, and H. Van As, "Quantification of water transport in plants with NMR imaging," J. Exp. Bot. 51, 1751-1759 (2000).
[CrossRef] [PubMed]

van Dusschoten, D.

T. W. J. Scheenen, D. van Dusschoten, P. A. de Jager, and H. Van As, "Quantification of water transport in plants with NMR imaging," J. Exp. Bot. 51, 1751-1759 (2000).
[CrossRef] [PubMed]

Webster, S.

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

Xu, Z.

Z. Xu, C. Joenathan, and B. M. Khorana, "Temporal and spatial properties of the time- varying speckles of botanical specimens," Opt. Eng. 34, 1487-1502 (1995).
[CrossRef]

Zeng, S.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

J. Exp. Bot.

T. W. J. Scheenen, D. van Dusschoten, P. A. de Jager, and H. Van As, "Quantification of water transport in plants with NMR imaging," J. Exp. Bot. 51, 1751-1759 (2000).
[CrossRef] [PubMed]

KSME Int. J.

Y. M. Kim and S. J. Lee, "Measurement of sap flow inside xylem vessels using x-ray micro imaging technique," KSME Int. J. 27, 1174-1181 (2003).

Opt. Eng.

Z. Xu, C. Joenathan, and B. M. Khorana, "Temporal and spatial properties of the time- varying speckles of botanical specimens," Opt. Eng. 34, 1487-1502 (1995).
[CrossRef]

Phys. Med. Biol.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Other

R. H. Swanson, "A thermal flowmeter for estimating the rate of xylem sap ascent in trees," in Flow, Its Measurement and Control in Science and Industry (Instrument Society of America, 1975), Vol. 1, pp. 647-652.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scattering of laser light from inner parts of a leaf.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

(a) Image of a leaf; calculation of parameter μ for each part of the images after (b) 0.25, (c) 1, (d) 3.5, (e) 6, and (f) 20 s.

Fig. 4
Fig. 4

Diagram of parameter μ versus time in (1) first day, (2) second day, (3) third day before irrigation, and (4) in the third day after irrigation.

Fig. 5
Fig. 5

Diagram of the parameter μ versus time. The leaf was irrigated at t = 100 s . The μ values were calculated for images with 5 s delays.

Fig. 6
Fig. 6

Diagram of μ versus time for lower area (lower part of the image) and upper area (upper part of the image) of a leaf with 2 cm separation.

Fig. 7
Fig. 7

Inspection of spatial drying process in a leaf. (a) Image of a leaf, (b)–(f), calculation of parameter μ in different parts of a leaf during the drying process in the first to the fifth day, respectively. Parameter μ is calculated between images with a 20 s time interval.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

[ I ref ( x , y ) I def ( x , y ) ] 2 = I ref 2 ( x , y ) + I def 2 ( x , y ) 2 I ref ( x , y ) I def ( x , y ) ,
I ref 2 ( x , y ) + I def 2 ( x , y ) 2 I ref ( x , y ) I def ( x , y ) .
2 I ref ( x , y ) I def ( x , y ) I ref 2 ( x , y ) + I def 2 ( x , y ) 1.
0 2 I ref ( x , y ) I def ( x , y ) I ref 2 ( x , y ) + I def 2 ( x , y ) 1.
ρ = 2 I ref ( x , y ) I def ( x , y ) I ref 2 ( x , y ) + I def 2 ( x , y ) .
0 ρ 1.
[ I ref ( x , y ) I def ( x , y ) ] 2 I ref 2 ( x , y ) + I def 2 ( x , y ) = 1 2 I ref ( x , y ) I def ( x , y ) I ref 2 ( x , y ) + I def 2 ( x , y ) .
[ I ref ( x , y ) I def ( x , y ) ] 2 I ref 2 ( x , y ) + I def 2 ( x , y ) = 1 ρ .
μ = 1 ρ .
μ = [ I ref ( x , y ) I def ( x , y ) ] 2 I ref 2 ( x , y ) + I def 2 ( x , y ) .
v = Δ x Δ t
= 2 cm 16 s
= 0.0012 m / s .

Metrics