Abstract

We present a method based on spatially resolved fluorescence measurement for the simultaneous estimation of optical transport parameters, namely, the reduced scattering coefficient (μs), the absorption coefficient (μa), and the intrinsic fluorescence spectra from turbid media. The accuracy of this approach was tested by conducting studies on a series of tissue-simulating phantoms with known optical transport properties. The estimated relative error in the values for μs and μa using this technique was found to be 10%. Furthermore, the line shape and intensity of the intrinsic fluorescence recovered by using this approach were observed to be free from the distorting effects of the wavelength-dependent absorption and scattering properties of the medium, and they were in excellent agreement with the directly measured intrinsic fluorescence spectra of the fluorophores.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Kortum and E. Servick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 556-606 (1996).
  2. G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
    [CrossRef]
  3. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia , 2, 1-29 (2000).
    [CrossRef]
  4. R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
    [CrossRef]
  5. R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).
  6. N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).
  7. A. S. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, A. R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, "Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and method of data analysis," Appl. Spectrosc. 53, 302-311 (1999).
    [CrossRef]
  8. N. Ramanujam, "Fluorescence spectroscopy in vivo," inEncyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2001), pp. 20-56.
  9. N. Agrawal, S. Gupta, Bhawna, A. Pradhan, K. Viswanathan, and P. K. Panigrahi, "Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors," IEEE J. Sel. Top. Quantum Electron. 9, 154-161 (2003).
    [CrossRef]
  10. S. K. Majumder, N. Ghosh, and P. K. Gupta, "Support vector machine for optical diagnosis of cancer," J. Biomed. Opt. 10, 24034 (2005).
    [CrossRef]
  11. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissue," Appl. Opt. 44, 1934-1941 (2005).
    [CrossRef]
  12. M. Keijzer, R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
  13. A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence-spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).
  14. A. J. Durkin and R. Richard-Kortum, "Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples," Lasers Surg. Med. 19, 75-89 (1996).
    [CrossRef]
  15. C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).
  16. A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
    [CrossRef]
  17. B. W. Pogue and G. Burke, "Fiber-optic bundle design for quantitative fluorescence measurement from tissue," Appl. Opt. 37, 7429-7435 (1998).
  18. J. Y. Qu, Z. Huang, and J. Hua, "Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media," Appl. Opt. 39, 3344-3356 (2000).
  19. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media" Appl. Opt. 32, 3585-3595 (1993).
  20. Q. Zhang, M. G. Muller, J. Wu, and M. S. Feld, "Turbidity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000).
  21. M. G. Muller, I. Gergakoudi, Q. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001).
  22. N. C. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, "Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach," Opt. Express 11, 3320-3330 (2003).
  23. M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, "Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model," Appl. Opt. 41, 4024-4034 (2002).
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic 1978), Vol. 1.
  25. T. J. Farrel, B. C. Wilson, and M. S. Patterson, "The use of neural network to determine tissue optical properties from diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992).
    [CrossRef]
  26. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).
  27. C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  28. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]

2005

2003

N. Agrawal, S. Gupta, Bhawna, A. Pradhan, K. Viswanathan, and P. K. Panigrahi, "Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors," IEEE J. Sel. Top. Quantum Electron. 9, 154-161 (2003).
[CrossRef]

N. C. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, "Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach," Opt. Express 11, 3320-3330 (2003).

2002

2001

2000

1999

1998

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[CrossRef]

B. W. Pogue and G. Burke, "Fiber-optic bundle design for quantitative fluorescence measurement from tissue," Appl. Opt. 37, 7429-7435 (1998).

1997

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

1996

A. J. Durkin and R. Richard-Kortum, "Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples," Lasers Surg. Med. 19, 75-89 (1996).
[CrossRef]

C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).

R. R. Kortum and E. Servick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 556-606 (1996).

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).

1994

1993

1992

T. J. Farrel, B. C. Wilson, and M. S. Patterson, "The use of neural network to determine tissue optical properties from diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992).
[CrossRef]

1990

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1989

M. Keijzer, R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).

1987

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
[CrossRef]

Agrawal, N.

N. Agrawal, S. Gupta, Bhawna, A. Pradhan, K. Viswanathan, and P. K. Panigrahi, "Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors," IEEE J. Sel. Top. Quantum Electron. 9, 154-161 (2003).
[CrossRef]

Alfano, R. R.

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
[CrossRef]

Andersson-Engels, S.

Atkinson, A.

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

Bengtsson, D.

Biswal, N. C.

Bohren, C. F.

C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Burke, G.

Chan, E.

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Choy, D. S. J.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
[CrossRef]

Criswell, G.

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

Durkin, A.

Durkin, A. J.

A. J. Durkin and R. Richard-Kortum, "Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples," Lasers Surg. Med. 19, 75-89 (1996).
[CrossRef]

A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence-spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).

Fan, J.

Farrel, T. J.

T. J. Farrel, B. C. Wilson, and M. S. Patterson, "The use of neural network to determine tissue optical properties from diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992).
[CrossRef]

Feld, M. S.

Follen-Mitchell, M.

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

Fuchs, H.

Gardner, C. M.

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).

Gergakoudi, I.

Ghosh, N.

Gillenwater, A.

Gupta, P. K.

S. K. Majumder, N. Ghosh, and P. K. Gupta, "Support vector machine for optical diagnosis of cancer," J. Biomed. Opt. 10, 24034 (2005).
[CrossRef]

Gupta, S.

N. Agrawal, S. Gupta, Bhawna, A. Pradhan, K. Viswanathan, and P. K. Panigrahi, "Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors," IEEE J. Sel. Top. Quantum Electron. 9, 154-161 (2003).
[CrossRef]

N. C. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, "Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach," Opt. Express 11, 3320-3330 (2003).

Hibst, R.

Hoffman, D. R.

C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hua, J.

Huang, Z.

Jacob, A. R.

Jacques, S. L.

Jaikumar, S.

Keijzer, M.

Kemp, B.

Kienle, A.

Kortum, R. R.

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

R. R. Kortum and E. Servick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 556-606 (1996).

Lam, W.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
[CrossRef]

Lilge, L.

Mahadevan-Jansen, A.

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

Majumder, S. K.

S. K. Majumder, N. Ghosh, and P. K. Gupta, "Support vector machine for optical diagnosis of cancer," J. Biomed. Opt. 10, 24034 (2005).
[CrossRef]

Malpica, A.

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

Muller, M. G.

Nair, M. S.

Opher, E.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
[CrossRef]

Patterson, M. S.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).

T. J. Farrel, B. C. Wilson, and M. S. Patterson, "The use of neural network to determine tissue optical properties from diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992).
[CrossRef]

Pferer, J.

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

Pogue, B. W.

Pradhan, A.

N. C. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, "Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach," Opt. Express 11, 3320-3330 (2003).

M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, "Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model," Appl. Opt. 41, 4024-4034 (2002).

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Qu, J. Y.

Raju, N. S.

Ramanujam, N.

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia , 2, 1-29 (2000).
[CrossRef]

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence-spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).

N. Ramanujam, "Fluorescence spectroscopy in vivo," inEncyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2001), pp. 20-56.

Rava, R. P.

Richard-Kortum, R.

A. J. Durkin and R. Richard-Kortum, "Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples," Lasers Surg. Med. 19, 75-89 (1996).
[CrossRef]

Richards-Kortum, R.

Servick-Muraca, E.

R. R. Kortum and E. Servick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 556-606 (1996).

Staerkel, G.

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

Star, W. M.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[CrossRef]

Steiner, R.

Svensson, J.

Swartling, J.

Tang, G. C.

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
[CrossRef]

Terike, K.

Thomsen, S.

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

Utzinger, U.

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[CrossRef]

Wahl, S. J.

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).

Warren, S.

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

Welch, A. J.

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Wilson, B. C.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[CrossRef]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).

T. J. Farrel, B. C. Wilson, and M. S. Patterson, "The use of neural network to determine tissue optical properties from diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992).
[CrossRef]

Wright, T.

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

Wu, J.

Zhang, Q.

Zuluaga, A. S. F.

Annu. Rev. Phys. Chem.

R. R. Kortum and E. Servick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 556-606 (1996).

Appl. Opt.

J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissue," Appl. Opt. 44, 1934-1941 (2005).
[CrossRef]

M. Keijzer, R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).

A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence-spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).

B. W. Pogue and G. Burke, "Fiber-optic bundle design for quantitative fluorescence measurement from tissue," Appl. Opt. 37, 7429-7435 (1998).

J. Y. Qu, Z. Huang, and J. Hua, "Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media," Appl. Opt. 39, 3344-3356 (2000).

J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media" Appl. Opt. 32, 3585-3595 (1993).

C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).

M. G. Muller, I. Gergakoudi, Q. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001).

M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, "Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model," Appl. Opt. 41, 4024-4034 (2002).

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).

Appl. Spectrosc.

IEEE J. Quantum Electron.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987).
[CrossRef]

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Agrawal, S. Gupta, Bhawna, A. Pradhan, K. Viswanathan, and P. K. Panigrahi, "Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors," IEEE J. Sel. Top. Quantum Electron. 9, 154-161 (2003).
[CrossRef]

J. Biomed. Opt.

S. K. Majumder, N. Ghosh, and P. K. Gupta, "Support vector machine for optical diagnosis of cancer," J. Biomed. Opt. 10, 24034 (2005).
[CrossRef]

J. Opt. Soc. Am.

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).

Lasers Surg. Med.

A. J. Durkin and R. Richard-Kortum, "Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples," Lasers Surg. Med. 19, 75-89 (1996).
[CrossRef]

A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef]

Neoplasia

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia , 2, 1-29 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[CrossRef]

Phys. Med. Biol.

T. J. Farrel, B. C. Wilson, and M. S. Patterson, "The use of neural network to determine tissue optical properties from diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992).
[CrossRef]

Other

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic 1978), Vol. 1.

C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

N. Ramanujam, "Fluorescence spectroscopy in vivo," inEncyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2001), pp. 20-56.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectrum recorded from aqueous solution of 20 μM protoporphyrin IX.

Fig. 2
Fig. 2

Bulk fluorescence spectra recorded at a distance of 0.6 mm from the excitation point, from the different tissue phantoms (shown as phantoms I–X in the legend). The inset shows the area-normalized spectral profiles.

Fig. 3
Fig. 3

(a) Area-normalized fluorescence spectra recorded from tissue phantom V at variable radial positions (ρ = 0.3, 0.75, 1.05, 1.35, 1.65, and 2.1 mm ) from the excitation point. (b) Spatial variation of fluorescence (for phantom V) for 11 different wavelengths at wavelength separations of 20 nm from 500–600 nm. (c) Typical fit of spatially resolved fluorescence profile (for phantom V, λ em = 530 nm ) to the theoretical model for spatial variation of fluorescence [Eq. (2)]. Solid circles show the experimental data, and the corresponding theoretical fit is shown by the solid curve.

Fig. 4
Fig. 4

(a) Wavelength variation of the estimated values for μ s (dashed curve) for phantom V and the corresponding values calculated using Mie theory (solid curve). (b) Wavelength variation of the estimated values for μ a (filled circles) for phantom V. Values for μ a of the pure absorber determined from spectrophotometric measurement are shown by a solid curve. (c) Percentage errors in the estimated values for μ s and μ a for all the tissue phantoms (listed as phantom I–X in Table 1).

Fig. 5
Fig. 5

(a) Area-normalized intrinsic fluorescence profiles extracted from the entire series of tissue phantoms (listed as phantoms I–X in Table 1). Inset shows the comparison between the spectral line shape of the measured bulk fluorescence (solid curve) and the recovered intrinsic fluorescence (dashed curve) from phantom V. The fluorescence spectra recorded from dilute solution of pure FAD is displayed by a dotted curve. (b) Intrinsic fluorescence spectra recovered from the tissue phantoms (phantoms III, VII, VIII, IX, and X) having the same concentration of FAD ( 20 μM ) but varying concentrations of absorbers and scatterers. (c) Variations in the measured bulk fluorescence intensity (dashed curve) and the extracted intrinsic fluorescence intensity (solid curve) at 530 nm for the entire series of phantoms. A linear fit to the intensity variation for the recovered intrinsic fluorescence is shown by the dotted straight line.

Tables (2)

Tables Icon

Table 1 Concentrations of Fluorophore (FAD), Absorber (Protoporphyrin IX) and Scatterers (Polystyrene Microspheres) Used in the Tissue Phantoms a

Tables Icon

Table 2 Estimated Values for μs and μ a at Different Wavelengths for Phantom V a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 U d f ( r ) - μ eff 2 U d f ( r ) = 3 ϕ μ a μ rt [ U d exi ( r , s ) + U ri exi ( r , s ) ] .
R f ( ρ , 0 ) = F f ( ρ , 0 ) / I 0 = R f ( r ) = ( ϕ μ a / 4 π ) [ z 0 ( μ eff + 1 / r 1 ) × exp ( - μ eff × r 1 ) / r 1 2 + ( z 0 + 2 z b ) × ( μ eff + l / r 2 ) exp ( - μ eff × r 2 ) / r 2 2 ] ,
μ a em = ( μ eff em ) 2 / ( 3 μ tr em ) and μ s ′em = ( μ tr em - μ a em ) .

Metrics