Abstract

In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries, reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as 50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes, permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry or the FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichia coli illustrates the capabilities of the technique.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Magde, E. L. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
    [CrossRef]
  2. E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. 1. Conceptual basis and theory," Biopolymers 13, 1-27 (1974).
    [CrossRef]
  3. D. Magde, E. L. Elson, and W. W. Webb, "Fluorescence correlation spectroscopy. 2. An experimental realization," Biopolymers 13, 29-61 (1974).
    [CrossRef] [PubMed]
  4. R. Rigler, U. Mets, J. Widengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background:analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
    [CrossRef]
  5. S. T. Hess and W. W. Webb, "Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy," Biophys. J. 83, 2300-2317 (2002).
    [CrossRef] [PubMed]
  6. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999).
    [CrossRef] [PubMed]
  7. P. Schwille, J. Korlach, and W. W. Webb, "Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes," Cytometry 36, 176-182 (1999).
    [CrossRef] [PubMed]
  8. J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson, "Intramolecular diffusion and hybridization state of oligonucleotides measured by fluorescence spectroscopy in living cells," Proc. Natl. Acad. Sci. USA 95, 6043-6048 (1998).
    [CrossRef] [PubMed]
  9. M. Wachsmuth, W. Waldeck, and J. Langowski, "Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially resolved fluorescence correlation spectroscopy," J. Mol. Biol. 298, 677-689 (2000).
    [CrossRef] [PubMed]
  10. P.-F. Lenne, D. Colombo, H. Giovannini, and H. Rigneault, "Flow profiles and directionnality in microcapillaries measured by fluorescence correlation spectroscopy," Single Mol. 3, 194-200 (2002).
    [CrossRef]
  11. S. R. Aragon and R. Pecora, "Fluorescence correlation spectroscopy as a probe of molecular dynamics," J. Chem. Phys. 64, 1791-1803 (1976).
    [CrossRef]
  12. A. Gennerich and D. Schild, "Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used," Biophys. J. 79, 3294-3306 (2000).
    [CrossRef] [PubMed]
  13. H. Asaï and T. Ando, "Fluorescence correlation spectroscopy illuminated by standing exciting light waves," J. Phys. Soc. Jpn. 40, 1527-1528 (1976).
    [CrossRef]
  14. P.-F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106-4108 (2002).
    [CrossRef]
  15. H. Rigneault and P.-F. Lenne, "Fluorescence correlation spectroscopy on mirror," J. Opt. Soc. Am. 20, 2203-2214 (2003).
    [CrossRef]
  16. J. Wiaengren and R. Rigler, "Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy, Bioimaging 4, 149-157 (1996).
    [CrossRef]
  17. T. Wohland, R. Rigler, and H. Vogel, "The standard deviation in fluorescence correlation spectroscopy," Biophys. J. 80, 2987-2999 (2001).
    [CrossRef] [PubMed]
  18. B. V. Bronk, S. D. Druger, J. Czg, and W. P. Van De Merwe, "Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering," Biophys. J. 69, 1170-1177 (1995).
    [CrossRef] [PubMed]
  19. A. Zumbusch and G. Jung, "Single molecule spectroscopy of the green fluorescent protein:a critical assessment," Single Mol. 1, 261-270 (2000).
    [CrossRef]
  20. M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, "Protein mobility in the cytoplasm of Escherichia coli," J. Bacteriol. 181, 197-203 (1999).
  21. L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, "Fluorescence correlation spectroscopy diffusion laws to probe the submicrometer cell membrane organization," Biophys. J. 89, 4029-4042 (2005).
    [CrossRef] [PubMed]
  22. K. Bacia and P. Schwille, "A dynamic view of cellular processes by in vivo fluorescence autocorrelation and cross-correlation spectroscopy," Methods 29, 74-85 (2003).
    [CrossRef] [PubMed]
  23. J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
    [CrossRef]
  24. J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution:a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
    [CrossRef]
  25. J. Widengren and P. Schwille, "Characterization of photoinduced isomerization and back-isomerization of the cyanine dye cy5 by fluorescence correlation spectroscopy," J. Phys. Chem. 104, 6416-6428 (2000).
    [CrossRef]
  26. K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
    [CrossRef] [PubMed]
  27. U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, "Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy," Proc. Natl. Acad. Sci. USA 95, 13573-13578 (1998).
    [CrossRef] [PubMed]
  28. D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, "Dynamics of fluorescence marker concentration as probe of mobility," Biophys. J. 16, 1315-1329 (1976).
    [CrossRef] [PubMed]
  29. I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
    [CrossRef] [PubMed]
  30. M. Arrio-Dupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of fluorescently labeled macromolecules in cultured muscle cells," Biophys. J. 70, 2327-2332 (1996).
    [CrossRef] [PubMed]
  31. M. Arrio-Dupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophys. J. 78, 901-907 (2000).
    [CrossRef] [PubMed]
  32. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
    [CrossRef] [PubMed]
  33. T. Sonehara, K. Kojima, and T. Irie, "Fluorescence correlation spectroscopy excited with a stationary interference pattern for capillary electrophoresis," Anal. Chem. 74, 5121-5131 (2002).
    [CrossRef] [PubMed]

2005 (2)

L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, "Fluorescence correlation spectroscopy diffusion laws to probe the submicrometer cell membrane organization," Biophys. J. 89, 4029-4042 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

2003 (3)

I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
[CrossRef] [PubMed]

K. Bacia and P. Schwille, "A dynamic view of cellular processes by in vivo fluorescence autocorrelation and cross-correlation spectroscopy," Methods 29, 74-85 (2003).
[CrossRef] [PubMed]

H. Rigneault and P.-F. Lenne, "Fluorescence correlation spectroscopy on mirror," J. Opt. Soc. Am. 20, 2203-2214 (2003).
[CrossRef]

2002 (5)

P.-F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106-4108 (2002).
[CrossRef]

P.-F. Lenne, D. Colombo, H. Giovannini, and H. Rigneault, "Flow profiles and directionnality in microcapillaries measured by fluorescence correlation spectroscopy," Single Mol. 3, 194-200 (2002).
[CrossRef]

S. T. Hess and W. W. Webb, "Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy," Biophys. J. 83, 2300-2317 (2002).
[CrossRef] [PubMed]

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

T. Sonehara, K. Kojima, and T. Irie, "Fluorescence correlation spectroscopy excited with a stationary interference pattern for capillary electrophoresis," Anal. Chem. 74, 5121-5131 (2002).
[CrossRef] [PubMed]

2001 (1)

T. Wohland, R. Rigler, and H. Vogel, "The standard deviation in fluorescence correlation spectroscopy," Biophys. J. 80, 2987-2999 (2001).
[CrossRef] [PubMed]

2000 (5)

A. Zumbusch and G. Jung, "Single molecule spectroscopy of the green fluorescent protein:a critical assessment," Single Mol. 1, 261-270 (2000).
[CrossRef]

J. Widengren and P. Schwille, "Characterization of photoinduced isomerization and back-isomerization of the cyanine dye cy5 by fluorescence correlation spectroscopy," J. Phys. Chem. 104, 6416-6428 (2000).
[CrossRef]

M. Arrio-Dupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophys. J. 78, 901-907 (2000).
[CrossRef] [PubMed]

A. Gennerich and D. Schild, "Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used," Biophys. J. 79, 3294-3306 (2000).
[CrossRef] [PubMed]

M. Wachsmuth, W. Waldeck, and J. Langowski, "Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially resolved fluorescence correlation spectroscopy," J. Mol. Biol. 298, 677-689 (2000).
[CrossRef] [PubMed]

1999 (3)

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999).
[CrossRef] [PubMed]

P. Schwille, J. Korlach, and W. W. Webb, "Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes," Cytometry 36, 176-182 (1999).
[CrossRef] [PubMed]

M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, "Protein mobility in the cytoplasm of Escherichia coli," J. Bacteriol. 181, 197-203 (1999).

1998 (2)

U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, "Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy," Proc. Natl. Acad. Sci. USA 95, 13573-13578 (1998).
[CrossRef] [PubMed]

J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson, "Intramolecular diffusion and hybridization state of oligonucleotides measured by fluorescence spectroscopy in living cells," Proc. Natl. Acad. Sci. USA 95, 6043-6048 (1998).
[CrossRef] [PubMed]

1996 (2)

J. Wiaengren and R. Rigler, "Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy, Bioimaging 4, 149-157 (1996).
[CrossRef]

M. Arrio-Dupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of fluorescently labeled macromolecules in cultured muscle cells," Biophys. J. 70, 2327-2332 (1996).
[CrossRef] [PubMed]

1995 (2)

B. V. Bronk, S. D. Druger, J. Czg, and W. P. Van De Merwe, "Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering," Biophys. J. 69, 1170-1177 (1995).
[CrossRef] [PubMed]

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution:a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

1994 (1)

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

1993 (1)

R. Rigler, U. Mets, J. Widengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background:analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

1976 (3)

H. Asaï and T. Ando, "Fluorescence correlation spectroscopy illuminated by standing exciting light waves," J. Phys. Soc. Jpn. 40, 1527-1528 (1976).
[CrossRef]

S. R. Aragon and R. Pecora, "Fluorescence correlation spectroscopy as a probe of molecular dynamics," J. Chem. Phys. 64, 1791-1803 (1976).
[CrossRef]

D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, "Dynamics of fluorescence marker concentration as probe of mobility," Biophys. J. 16, 1315-1329 (1976).
[CrossRef] [PubMed]

1974 (2)

E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. 1. Conceptual basis and theory," Biopolymers 13, 1-27 (1974).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, "Fluorescence correlation spectroscopy. 2. An experimental realization," Biopolymers 13, 29-61 (1974).
[CrossRef] [PubMed]

1972 (1)

D. Magde, E. L. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Ando, T.

H. Asaï and T. Ando, "Fluorescence correlation spectroscopy illuminated by standing exciting light waves," J. Phys. Soc. Jpn. 40, 1527-1528 (1976).
[CrossRef]

Aragon, S. R.

S. R. Aragon and R. Pecora, "Fluorescence correlation spectroscopy as a probe of molecular dynamics," J. Chem. Phys. 64, 1791-1803 (1976).
[CrossRef]

Arrio-Dupont, M.

M. Arrio-Dupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophys. J. 78, 901-907 (2000).
[CrossRef] [PubMed]

M. Arrio-Dupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of fluorescently labeled macromolecules in cultured muscle cells," Biophys. J. 70, 2327-2332 (1996).
[CrossRef] [PubMed]

Asaï, H.

H. Asaï and T. Ando, "Fluorescence correlation spectroscopy illuminated by standing exciting light waves," J. Phys. Soc. Jpn. 40, 1527-1528 (1976).
[CrossRef]

Axelrod, D.

D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, "Dynamics of fluorescence marker concentration as probe of mobility," Biophys. J. 16, 1315-1329 (1976).
[CrossRef] [PubMed]

Bacia, K.

K. Bacia and P. Schwille, "A dynamic view of cellular processes by in vivo fluorescence autocorrelation and cross-correlation spectroscopy," Methods 29, 74-85 (2003).
[CrossRef] [PubMed]

Bonod, N.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

Bronk, B. V.

B. V. Bronk, S. D. Druger, J. Czg, and W. P. Van De Merwe, "Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering," Biophys. J. 69, 1170-1177 (1995).
[CrossRef] [PubMed]

Browne, E. S.

J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson, "Intramolecular diffusion and hybridization state of oligonucleotides measured by fluorescence spectroscopy in living cells," Proc. Natl. Acad. Sci. USA 95, 6043-6048 (1998).
[CrossRef] [PubMed]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

Colombo, D.

P.-F. Lenne, D. Colombo, H. Giovannini, and H. Rigneault, "Flow profiles and directionnality in microcapillaries measured by fluorescence correlation spectroscopy," Single Mol. 3, 194-200 (2002).
[CrossRef]

Cribier, S.

M. Arrio-Dupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophys. J. 78, 901-907 (2000).
[CrossRef] [PubMed]

M. Arrio-Dupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of fluorescently labeled macromolecules in cultured muscle cells," Biophys. J. 70, 2327-2332 (1996).
[CrossRef] [PubMed]

Czg, J.

B. V. Bronk, S. D. Druger, J. Czg, and W. P. Van De Merwe, "Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering," Biophys. J. 69, 1170-1177 (1995).
[CrossRef] [PubMed]

d'Albis, A.

M. Arrio-Dupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of fluorescently labeled macromolecules in cultured muscle cells," Biophys. J. 70, 2327-2332 (1996).
[CrossRef] [PubMed]

Davis, D. M.

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

Devaux, P. F.

M. Arrio-Dupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophys. J. 78, 901-907 (2000).
[CrossRef] [PubMed]

M. Arrio-Dupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of fluorescently labeled macromolecules in cultured muscle cells," Biophys. J. 70, 2327-2332 (1996).
[CrossRef] [PubMed]

Dintinger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

Druger, S. D.

B. V. Bronk, S. D. Druger, J. Czg, and W. P. Van De Merwe, "Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering," Biophys. J. 69, 1170-1177 (1995).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

Elowitz, M. B.

M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, "Protein mobility in the cytoplasm of Escherichia coli," J. Bacteriol. 181, 197-203 (1999).

Elson, E. L.

D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, "Dynamics of fluorescence marker concentration as probe of mobility," Biophys. J. 16, 1315-1329 (1976).
[CrossRef] [PubMed]

E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. 1. Conceptual basis and theory," Biopolymers 13, 1-27 (1974).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, "Fluorescence correlation spectroscopy. 2. An experimental realization," Biopolymers 13, 29-61 (1974).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Etienne, E.

P.-F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106-4108 (2002).
[CrossRef]

Foglino, M.

I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
[CrossRef] [PubMed]

Foucault, G.

M. Arrio-Dupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophys. J. 78, 901-907 (2000).
[CrossRef] [PubMed]

M. Arrio-Dupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of fluorescently labeled macromolecules in cultured muscle cells," Biophys. J. 70, 2327-2332 (1996).
[CrossRef] [PubMed]

French, P. M. W.

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

Gennerich, A.

A. Gennerich and D. Schild, "Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used," Biophys. J. 79, 3294-3306 (2000).
[CrossRef] [PubMed]

Giovannini, H.

P.-F. Lenne, D. Colombo, H. Giovannini, and H. Rigneault, "Flow profiles and directionnality in microcapillaries measured by fluorescence correlation spectroscopy," Single Mol. 3, 194-200 (2002).
[CrossRef]

Haupts, U.

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999).
[CrossRef] [PubMed]

U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, "Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy," Proc. Natl. Acad. Sci. USA 95, 13573-13578 (1998).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess and W. W. Webb, "Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy," Biophys. J. 83, 2300-2317 (2002).
[CrossRef] [PubMed]

Irie, T.

T. Sonehara, K. Kojima, and T. Irie, "Fluorescence correlation spectroscopy excited with a stationary interference pattern for capillary electrophoresis," Anal. Chem. 74, 5121-5131 (2002).
[CrossRef] [PubMed]

Jung, G.

A. Zumbusch and G. Jung, "Single molecule spectroscopy of the green fluorescent protein:a critical assessment," Single Mol. 1, 261-270 (2000).
[CrossRef]

Kask, P.

R. Rigler, U. Mets, J. Widengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background:analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Kojima, K.

T. Sonehara, K. Kojima, and T. Irie, "Fluorescence correlation spectroscopy excited with a stationary interference pattern for capillary electrophoresis," Anal. Chem. 74, 5121-5131 (2002).
[CrossRef] [PubMed]

Koppel, D. E.

D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, "Dynamics of fluorescence marker concentration as probe of mobility," Biophys. J. 16, 1315-1329 (1976).
[CrossRef] [PubMed]

Korlach, J.

P. Schwille, J. Korlach, and W. W. Webb, "Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes," Cytometry 36, 176-182 (1999).
[CrossRef] [PubMed]

Langowski, J.

M. Wachsmuth, W. Waldeck, and J. Langowski, "Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially resolved fluorescence correlation spectroscopy," J. Mol. Biol. 298, 677-689 (2000).
[CrossRef] [PubMed]

Lazdunski, A.

I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
[CrossRef] [PubMed]

Ledgham, F.

I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
[CrossRef] [PubMed]

Leibler, S.

M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, "Protein mobility in the cytoplasm of Escherichia coli," J. Bacteriol. 181, 197-203 (1999).

Lenne, P.-F.

L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, "Fluorescence correlation spectroscopy diffusion laws to probe the submicrometer cell membrane organization," Biophys. J. 89, 4029-4042 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

H. Rigneault and P.-F. Lenne, "Fluorescence correlation spectroscopy on mirror," J. Opt. Soc. Am. 20, 2203-2214 (2003).
[CrossRef]

P.-F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106-4108 (2002).
[CrossRef]

P.-F. Lenne, D. Colombo, H. Giovannini, and H. Rigneault, "Flow profiles and directionnality in microcapillaries measured by fluorescence correlation spectroscopy," Single Mol. 3, 194-200 (2002).
[CrossRef]

Lvque-Fort, S.

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

Magde, D.

E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. 1. Conceptual basis and theory," Biopolymers 13, 1-27 (1974).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, "Fluorescence correlation spectroscopy. 2. An experimental realization," Biopolymers 13, 29-61 (1974).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Maiti, S.

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999).
[CrossRef] [PubMed]

U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, "Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy," Proc. Natl. Acad. Sci. USA 95, 13573-13578 (1998).
[CrossRef] [PubMed]

Marguet, D.

L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, "Fluorescence correlation spectroscopy diffusion laws to probe the submicrometer cell membrane organization," Biophys. J. 89, 4029-4042 (2005).
[CrossRef] [PubMed]

Mets, U.

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution:a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

R. Rigler, U. Mets, J. Widengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background:analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Pecora, R.

S. R. Aragon and R. Pecora, "Fluorescence correlation spectroscopy as a probe of molecular dynamics," J. Chem. Phys. 64, 1791-1803 (1976).
[CrossRef]

Pederson, T.

J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson, "Intramolecular diffusion and hybridization state of oligonucleotides measured by fluorescence spectroscopy in living cells," Proc. Natl. Acad. Sci. USA 95, 6043-6048 (1998).
[CrossRef] [PubMed]

Phillips, D.

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

Politz, J. C.

J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson, "Intramolecular diffusion and hybridization state of oligonucleotides measured by fluorescence spectroscopy in living cells," Proc. Natl. Acad. Sci. USA 95, 6043-6048 (1998).
[CrossRef] [PubMed]

Popov, E.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

Prima, V.

I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
[CrossRef] [PubMed]

Rigler, R.

T. Wohland, R. Rigler, and H. Vogel, "The standard deviation in fluorescence correlation spectroscopy," Biophys. J. 80, 2987-2999 (2001).
[CrossRef] [PubMed]

J. Wiaengren and R. Rigler, "Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy, Bioimaging 4, 149-157 (1996).
[CrossRef]

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution:a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

R. Rigler, U. Mets, J. Widengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background:analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Rigneault, H.

L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, "Fluorescence correlation spectroscopy diffusion laws to probe the submicrometer cell membrane organization," Biophys. J. 89, 4029-4042 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

H. Rigneault and P.-F. Lenne, "Fluorescence correlation spectroscopy on mirror," J. Opt. Soc. Am. 20, 2203-2214 (2003).
[CrossRef]

P.-F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106-4108 (2002).
[CrossRef]

P.-F. Lenne, D. Colombo, H. Giovannini, and H. Rigneault, "Flow profiles and directionnality in microcapillaries measured by fluorescence correlation spectroscopy," Single Mol. 3, 194-200 (2002).
[CrossRef]

Schild, D.

A. Gennerich and D. Schild, "Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used," Biophys. J. 79, 3294-3306 (2000).
[CrossRef] [PubMed]

Schlessinger, J.

D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, "Dynamics of fluorescence marker concentration as probe of mobility," Biophys. J. 16, 1315-1329 (1976).
[CrossRef] [PubMed]

Schwille, P.

K. Bacia and P. Schwille, "A dynamic view of cellular processes by in vivo fluorescence autocorrelation and cross-correlation spectroscopy," Methods 29, 74-85 (2003).
[CrossRef] [PubMed]

J. Widengren and P. Schwille, "Characterization of photoinduced isomerization and back-isomerization of the cyanine dye cy5 by fluorescence correlation spectroscopy," J. Phys. Chem. 104, 6416-6428 (2000).
[CrossRef]

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999).
[CrossRef] [PubMed]

P. Schwille, J. Korlach, and W. W. Webb, "Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes," Cytometry 36, 176-182 (1999).
[CrossRef] [PubMed]

U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, "Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy," Proc. Natl. Acad. Sci. USA 95, 13573-13578 (1998).
[CrossRef] [PubMed]

Siegel, J.

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

Sonehara, T.

T. Sonehara, K. Kojima, and T. Irie, "Fluorescence correlation spectroscopy excited with a stationary interference pattern for capillary electrophoresis," Anal. Chem. 74, 5121-5131 (2002).
[CrossRef] [PubMed]

Stock, J. B.

M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, "Protein mobility in the cytoplasm of Escherichia coli," J. Bacteriol. 181, 197-203 (1999).

Sturgis, J. N.

I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
[CrossRef] [PubMed]

Suhling, K.

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

Surette, M. G.

M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, "Protein mobility in the cytoplasm of Escherichia coli," J. Bacteriol. 181, 197-203 (1999).

Vacher, M.

M. Arrio-Dupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophys. J. 78, 901-907 (2000).
[CrossRef] [PubMed]

Van De Merwe, W. P.

B. V. Bronk, S. D. Druger, J. Czg, and W. P. Van De Merwe, "Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering," Biophys. J. 69, 1170-1177 (1995).
[CrossRef] [PubMed]

Ventre, I.

I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
[CrossRef] [PubMed]

Vogel, H.

T. Wohland, R. Rigler, and H. Vogel, "The standard deviation in fluorescence correlation spectroscopy," Biophys. J. 80, 2987-2999 (2001).
[CrossRef] [PubMed]

Wachsmuth, M.

M. Wachsmuth, W. Waldeck, and J. Langowski, "Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially resolved fluorescence correlation spectroscopy," J. Mol. Biol. 298, 677-689 (2000).
[CrossRef] [PubMed]

Waldeck, W.

M. Wachsmuth, W. Waldeck, and J. Langowski, "Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially resolved fluorescence correlation spectroscopy," J. Mol. Biol. 298, 677-689 (2000).
[CrossRef] [PubMed]

Wawrezinieck, L.

L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, "Fluorescence correlation spectroscopy diffusion laws to probe the submicrometer cell membrane organization," Biophys. J. 89, 4029-4042 (2005).
[CrossRef] [PubMed]

Webb, S. E. D.

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

Webb, W. W.

S. T. Hess and W. W. Webb, "Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy," Biophys. J. 83, 2300-2317 (2002).
[CrossRef] [PubMed]

P. Schwille, J. Korlach, and W. W. Webb, "Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes," Cytometry 36, 176-182 (1999).
[CrossRef] [PubMed]

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999).
[CrossRef] [PubMed]

U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, "Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy," Proc. Natl. Acad. Sci. USA 95, 13573-13578 (1998).
[CrossRef] [PubMed]

D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, "Dynamics of fluorescence marker concentration as probe of mobility," Biophys. J. 16, 1315-1329 (1976).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, "Fluorescence correlation spectroscopy. 2. An experimental realization," Biopolymers 13, 29-61 (1974).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Wenger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

Wiaengren, J.

J. Wiaengren and R. Rigler, "Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy, Bioimaging 4, 149-157 (1996).
[CrossRef]

Widengren, J.

J. Widengren and P. Schwille, "Characterization of photoinduced isomerization and back-isomerization of the cyanine dye cy5 by fluorescence correlation spectroscopy," J. Phys. Chem. 104, 6416-6428 (2000).
[CrossRef]

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution:a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

R. Rigler, U. Mets, J. Widengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background:analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Wohland, T.

T. Wohland, R. Rigler, and H. Vogel, "The standard deviation in fluorescence correlation spectroscopy," Biophys. J. 80, 2987-2999 (2001).
[CrossRef] [PubMed]

Wolf, D. E.

J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson, "Intramolecular diffusion and hybridization state of oligonucleotides measured by fluorescence spectroscopy in living cells," Proc. Natl. Acad. Sci. USA 95, 6043-6048 (1998).
[CrossRef] [PubMed]

Wolf, P.-E.

M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, "Protein mobility in the cytoplasm of Escherichia coli," J. Bacteriol. 181, 197-203 (1999).

Zumbusch, A.

A. Zumbusch and G. Jung, "Single molecule spectroscopy of the green fluorescent protein:a critical assessment," Single Mol. 1, 261-270 (2000).
[CrossRef]

Anal. Chem. (1)

T. Sonehara, K. Kojima, and T. Irie, "Fluorescence correlation spectroscopy excited with a stationary interference pattern for capillary electrophoresis," Anal. Chem. 74, 5121-5131 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P.-F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106-4108 (2002).
[CrossRef]

Bioimaging (1)

J. Wiaengren and R. Rigler, "Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy, Bioimaging 4, 149-157 (1996).
[CrossRef]

Biophys. J. (10)

T. Wohland, R. Rigler, and H. Vogel, "The standard deviation in fluorescence correlation spectroscopy," Biophys. J. 80, 2987-2999 (2001).
[CrossRef] [PubMed]

B. V. Bronk, S. D. Druger, J. Czg, and W. P. Van De Merwe, "Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering," Biophys. J. 69, 1170-1177 (1995).
[CrossRef] [PubMed]

A. Gennerich and D. Schild, "Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used," Biophys. J. 79, 3294-3306 (2000).
[CrossRef] [PubMed]

S. T. Hess and W. W. Webb, "Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy," Biophys. J. 83, 2300-2317 (2002).
[CrossRef] [PubMed]

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999).
[CrossRef] [PubMed]

L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, "Fluorescence correlation spectroscopy diffusion laws to probe the submicrometer cell membrane organization," Biophys. J. 89, 4029-4042 (2005).
[CrossRef] [PubMed]

K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lvque-Fort, S. E. D. Webb, and D. M. Davis, "Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).
[CrossRef] [PubMed]

D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, "Dynamics of fluorescence marker concentration as probe of mobility," Biophys. J. 16, 1315-1329 (1976).
[CrossRef] [PubMed]

M. Arrio-Dupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of fluorescently labeled macromolecules in cultured muscle cells," Biophys. J. 70, 2327-2332 (1996).
[CrossRef] [PubMed]

M. Arrio-Dupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophys. J. 78, 901-907 (2000).
[CrossRef] [PubMed]

Biopolymers (2)

E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. 1. Conceptual basis and theory," Biopolymers 13, 1-27 (1974).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, "Fluorescence correlation spectroscopy. 2. An experimental realization," Biopolymers 13, 29-61 (1974).
[CrossRef] [PubMed]

Cytometry (1)

P. Schwille, J. Korlach, and W. W. Webb, "Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes," Cytometry 36, 176-182 (1999).
[CrossRef] [PubMed]

Eur. Biophys. J. (1)

R. Rigler, U. Mets, J. Widengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background:analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

J. Bacteriol. (1)

M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, "Protein mobility in the cytoplasm of Escherichia coli," J. Bacteriol. 181, 197-203 (1999).

J. Chem. Phys. (1)

S. R. Aragon and R. Pecora, "Fluorescence correlation spectroscopy as a probe of molecular dynamics," J. Chem. Phys. 64, 1791-1803 (1976).
[CrossRef]

J. Fluoresc. (1)

J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994).
[CrossRef]

J. Mol. Biol. (1)

M. Wachsmuth, W. Waldeck, and J. Langowski, "Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially resolved fluorescence correlation spectroscopy," J. Mol. Biol. 298, 677-689 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

H. Rigneault and P.-F. Lenne, "Fluorescence correlation spectroscopy on mirror," J. Opt. Soc. Am. 20, 2203-2214 (2003).
[CrossRef]

J. Phys. Chem. (2)

J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution:a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995).
[CrossRef]

J. Widengren and P. Schwille, "Characterization of photoinduced isomerization and back-isomerization of the cyanine dye cy5 by fluorescence correlation spectroscopy," J. Phys. Chem. 104, 6416-6428 (2000).
[CrossRef]

J. Phys. Soc. Jpn. (1)

H. Asaï and T. Ando, "Fluorescence correlation spectroscopy illuminated by standing exciting light waves," J. Phys. Soc. Jpn. 40, 1527-1528 (1976).
[CrossRef]

Methods (1)

K. Bacia and P. Schwille, "A dynamic view of cellular processes by in vivo fluorescence autocorrelation and cross-correlation spectroscopy," Methods 29, 74-85 (2003).
[CrossRef] [PubMed]

Mol. Microbiol. (1)

I. Ventre, F. Ledgham, V. Prima, A. Lazdunski, M. Foglino, and J. N. Sturgis, "Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy," Mol. Microbiol. 48, 187-198 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401-117404 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. Magde, E. L. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson, "Intramolecular diffusion and hybridization state of oligonucleotides measured by fluorescence spectroscopy in living cells," Proc. Natl. Acad. Sci. USA 95, 6043-6048 (1998).
[CrossRef] [PubMed]

U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, "Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy," Proc. Natl. Acad. Sci. USA 95, 13573-13578 (1998).
[CrossRef] [PubMed]

Single Mol. (2)

P.-F. Lenne, D. Colombo, H. Giovannini, and H. Rigneault, "Flow profiles and directionnality in microcapillaries measured by fluorescence correlation spectroscopy," Single Mol. 3, 194-200 (2002).
[CrossRef]

A. Zumbusch and G. Jung, "Single molecule spectroscopy of the green fluorescent protein:a critical assessment," Single Mol. 1, 261-270 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spatial configurations for standard FCS for the diffusion coefficient measurement simulation in a tubular structure of diameter d = 1 μm (with examples of transversal waist ω xy = 250 nm and ω xy = 550 nm).

Fig. 2
Fig. 2

Simulated ACF (open circles) numerically obtained for a transversal waist, ω xy = 350 nm. The 3D, 2D, and 1D fits are represented with their parameters, s is the structure parameter [see Eq. (6)].

Fig. 3
Fig. 3

Diffusion coefficients, obtained from the numerical calculations in a tubular structure with a confinement diameter, d = 1 μm, resulting from standard FCS analysis ( D 3 D and D 2 D ) and from FCS on the mirror with our fringe spacing method (Df ), depending on the transversal waist ω xy . Dotted line, Dsimul = 10 μm2∕s, stands for the diffusion coefficient in the simulations. Whatever the transversal waist the standard FCS analysis leads to an erroneous diffusion coefficient estimation, whereas analysis of FCS on mirror leads to a good measurement.

Fig. 4
Fig. 4

Spatial configurations of FCS on a mirror for diffusion coefficient measurement simulation in a tubular structure of diameter d = 1 μm lying on a mirror (example of transversal waist ω xy = 250 nm and ω xy = 550 nm). The interference fringes reshape the excitation volume.

Fig. 5
Fig. 5

Simulated ρ function:Circles, ρ ratio calculated from the simulated ACF with and without a mirror; curve, its fit from Eq. (11) for a diffusion in a tubular structure of diameter d = 1 μm and for a transversal waist ω xy = 400 nm.

Fig. 6
Fig. 6

Diffusion coefficients deduced from various fits:standard FCS analysis with the standard 3D model ( D 3 D ) and with the standard 2D model ( D 2 D ) , and from FCS on a mirror with our fringe spacing method (Df ), depending on the diameter of the confinement tube. Dotted line, Dsimul = 10 μm2∕s, the input diffusion coefficient in the simulations and ω xy = 250 nm.

Fig. 7
Fig. 7

Range of validity for standard FCS and FCS on a mirror, depending on the confinement diameter expressed in the fringe spacing; λ is the excitation wavelength in the diffusion medium.

Fig. 8
Fig. 8

Examples of temporal count rates obtained in 5 s from EC (light curves) and the quasi-instantaneous average (heavy curves). The ACF associated with the rates in (A) and (B) are, respectively, conserved and excluded from analysis.

Fig. 9
Fig. 9

Experimentally obtained ρ ratio. Circles, ρ ratio obtained from measurements in EC labeled with IscS-EGFP with standard deviations; solid line, fit with Eq. (14) with (Photφ)M = (Photφ)S xy = 450 nm).

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

MDE ( x , y , z ) = exp ( 2 x 2 + y 2 ω x y 2 ) exp ( 2 z 2 ω z 2 ) ,
g ( 2 ) ( τ ) = 1 + 1 N g x ( τ ) g y ( τ ) g z ( τ ) ,
g x ( τ ) = ( 1 + τ / τ d ) 1 / 2 ,
D = ω x y 2 / 4 τ d .
g y ( τ ) = { 1 in   the   absence   of   diffusion   along   O y , ( 1 + τ / τ d ) 1 / 2 for   free   diffusion   along   O y ,
g z ( τ ) = { 1 in   the   absence   of   diffusion   along   O z , ( 1 + s 2 τ / τ d ) 1 / 2 for   free   diffusion   along   O z ,
MDE ( x , y , z ) = exp ( 2 x 2 + y 2 ω x y 2 ) exp ( 2 z 2 ω z 2 ) × 2 cos 2 ( 2 π n tube λ 0 z ) ,
g M ( 2 ) ( τ ) = 1 + 1 N [ 1 + n f exp ( τ / τ f ) ] g x ( τ ) g y ( τ ) g z ( τ ) ,
τ f = λ 2 16 π 2 D = λ 0     2 16 π 2 n tube D .
ρ ( τ ) = ACF M ( τ ) 1 ACF S ( τ ) 1 ,
ρ ( τ ) = A [ 1 + n f exp ( τ / τ f ) ] ,
A = N S / N M .
g ( 2 ) ( τ ) = 1 + ( 1 / N ) ( noise ) ( Phot φ ) τ g x ( τ ) g y ( τ ) g z ( τ ) ,
ρ ( τ ) = A [ ( Phot φ ) M ( Phot φ ) S ] τ [ 1 + n f exp ( τ / τ f ) ] ,
A = ( noise ) M ( noise ) S N S N M .
D = k T 6 π η R ,
( M IscS-EGFP M EGFP ) 1 / 3 0.7 ,
D f IscS-EGFP D f EGFP 0.21 ,
η IscS-EGFP η EGFP = D f EGFP D f IscS-EGFP ( M EGFP M IscS-EGFP ) 1 / 3 3.3.
δ C ( r , t ) = C ( r , t ) C ¯ .
ϕ ( r , r , τ ) = δ C ( r , τ ) δ C ( r , t + τ )
ϕ ( r , r , τ ) = δ C ( r , 0 ) δ C ( r , τ ) ,
ϕ ( r , r , τ ) = C ¯ ( 4 π D τ ) n / 2 exp ( | r r | 2 4 D τ ) ,
i ( t ) = q MDE ( r ) C ( r , t ) d r ,
g ( 2 ) ( τ ) = i ( 0 ) i ( τ ) i ( t ) 2 = 1 + δ i ( 0 ) δ i ( τ ) i ( t ) 2 ,
δ i ( t ) = i ( t ) i ¯ = q MDE ( r ) δ C ( r , t ) d r ,
δ i ( 0 ) δ i ( τ ) = q 2 MDE ( r ) MDE ( r ) × δ C ( r , 0 ) δ C ( r , τ ) d r d r
=  q 2 MDE ( r ) MDE ( r ) × ϕ ( r , r , τ ) d r d r .
MDE ( r ) = M 0 exp ( 2 x 2 + y 2 ω x y 2 ) exp ( 2 z 2 ω z 2 ) ,
g ( 2 ) ( τ ) = 1 + ( 1 / N ) ( 1 + τ / τ d ) 1 ( 1 + s 2 τ / τ d ) - 1 / 2 ,
V d = [ MDE ( r ) d r ] 2 [ MDE ( r ) ] 2 d r .
MDE ( r ) = M 0 MDE x ( x ) MDE y ( y ) MDE z ( z ) ,
MDE j ( j ) = exp ( 2 j 2 ω x y 2 ) ( j = x , y ) ,
MDE z ( z ) = [ 1 + V cos ( 2 k z ) ] exp ( 2 z 2 ω z     2 ) ,
g ( 2 ) ( τ ) = 1 + | MDE ( q ) | 2 ϕ ( q , τ ) d q | MDE ( q ) | 2 ϕ ( q , 0 ) d q = γ ( τ ) = 1 + γ ( τ ) ,
ϕ ( q , τ ) = ϕ ( r r = R , τ ) exp ( q R ) d R
ϕ ( R , τ ) = 1 2 π ϕ ( q , τ ) exp ( - i q R ) d q .
MDE ( q ) = M 0 MDE x ( q x ) MDE y ( q y ) MDE z ( q z ) ,
MDE j ( q j ) = ( π 2 ) 1 / 2 ω x y exp ( q j 2 ω x y 2 8 ) ( j = x , y ) ,
MDE z ( q z ) = ( π 2 ) 1 / 2 ω z { exp ( q z 2 ω z 2 8 ) + V 2 exp [ ω z     2 ( q z 2 k ) 2 8 ] + V 2 exp [ ω z     2 ( q z + 2 k ) 2 8 ] } .
ϕ ( R , τ ) = C ¯ ( 4 π D τ ) 3 / 2 exp ( R 2 4 D τ )
ϕ ( q , τ ) = C ¯ ϕ x ( q x , τ ) ϕ y ( q y , τ ) ϕ z ( q z , τ ) = C ¯ exp ( q 2 D τ ) ,
ϕ j ( q j , τ ) = exp ( q j     2 D τ ) ( j = x , y , z ) .
g ( 2 ) ( τ ) = 1 + γ ( τ ) = 1 + γ x ( τ ) γ y ( τ ) γ z ( τ ) ,
γ j ( τ ) = | MDE j ( q j ) | 2 ϕ j ( q j , τ ) d q j | MDE j ( q j ) | 2 ϕ j ( q j , 0 ) d q j ( j = x , y , z ) .
γ j ( τ ) = ( 1 + τ / τ d x y ) 1 / 2 ( j = x , y ) ,
2 π ω z     2 | MDE z ( q z ) | 2 = V 2 4 exp [ ω z     2 ( q z 2 k ) 2 4 ] + V 2 4 exp [ ω z     2 ( q z + 2 k ) 2 4 ] + exp [ q z     2 ω z     2 4 ] + V 2 2 exp [ ω z     2 ( q z 2 k ) 2 8 ω z     2 ( q z + 2 k ) 2 8 ] + V exp [ ω z     2 ( q z 2 k ) 2 8 q z     2 ω z     2 8 ] + V exp [ ω z     2 ( q z + 2 k ) 2 8 q z     2 ω z     2 8 ] .
γ z ( τ ) = γ 1 ( 2 k , τ ) + γ 1 ( 2 k , τ ) + 4 γ 1 ( 0 , τ ) / V 2 γ 1 ( 2 k , 0 ) + γ 1 ( 2 k , 0 ) + 4 γ 1 ( 0 , 0 ) / V 2 ,
γ 1 ( k , τ ) = π ω z     2 V 2 8 exp [ ω z     2 4 ( q z k ) 2 q z     2 D τ ] d q z
= π 3 / 2 ω z V 2 4 ( 1 + τ / τ d z ) 1 / 2 × exp [ k 2 D τ ( 1 + τ / τ d z ) 1 / 2 ] ,
g ( 2 ) ( τ ) = 1 + ( 1 / N ) ( 1 + τ / τ d x y ) 1 ( 1 + τ / τ d z ) 1 / 2 ×  [ 1 + n f exp ( τ / τ f ) ( 1 + τ / τ d z ) 1 / 2 ] fringe factor ,
τ f = λ 2 16 π 2 D ,
g ( 2 ) ( τ ) 1 + 1 N ( 1 + τ / τ d x y ) 1 ( 1 + τ / τ d z ) 1 / 2 [ 1 + n f exp ( τ / τ f ) ] ,
N = V 2 + 2 2 N = ( 1 + n f ) N .

Metrics