Abstract

Speckle-contrast monitoring of laser-mediated tissue modification is examined for the specific case of delivery of speckle-modulated light from the tissue to detector (CCD camera) with a fiber-optic element (bundle). The influence of the transfer properties of a bundle-based optical system on the decorrelation rate of detected dynamic speckles is analyzed. Compared with the widely used method on the base of speckle-contrast analysis in the image plane, the considered technique is characterized by a more pronounced correlation between variations of the contrast of time-averaged speckle patterns and changes in the temperature of the modified tissue. The possibility of characterization of the modification kinetics (in particular, by the evaluation of the characteristic activation energy) using the developed speckle technique is demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
    [CrossRef]
  2. J. D. Briers and S. Webster, "Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
    [CrossRef]
  3. J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
    [CrossRef]
  4. J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophthalmol. Visual Sci. 22, 255-259 (1982).
  5. G. Richards and J. D. Briers, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range," in Proc. SPIE 2981, 160-171 (1997).
    [CrossRef]
  6. A. F. Fercher, M. Peukert, and E. Roth, "Visualization and measurement of retinal blood flow by means of laser speckle photography," Opt. Eng. 25, 731-735 (1986).
  7. J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
    [CrossRef]
  8. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
    [CrossRef] [PubMed]
  9. D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel'chenko, L. V. Kuznetsova, and V. N. Bagratashvili, "Speckle-contrast monitoring of tissue thermal modification," Appl. Opt. 41, 5989-5996 (2002).
    [CrossRef] [PubMed]
  10. G. E. Nilsson, E. G. Salerud, N. O. T. Stromberg, and K. Wardell, "Laser Doppler perfusion monitoring and imaging," in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 15-1-15-24.
  11. V. Viasnoff, F. Lequeux, and D. J. Pine, "Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73, 2336-2344 (2002).
    [CrossRef]
  12. S. E. Skipetrov and R. Maynard, "Dynamic multiple scattering of light in multilayer turbid media," Phys. Lett. A 217, 181-185 (1996).
    [CrossRef]
  13. S. Romer, F. Scheffold, and P. Schurtenberger, "Sol-gel transition of concentrated colloidal suspensions," Phys. Rev. Lett. 85, 4980-4983 (2000).
    [CrossRef] [PubMed]
  14. F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of non-ergodic media," Phys. Rev. E 63, 061404 (2001).
    [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  16. D. A. Zimnyakov, J. T. Oh, Yu. P. Sinichkin, V. A. Trifonov, and E. V. Gurianov, "Polarization-sensitive speckle spectroscopy of scattering media beyond the diffusion limit," J. Opt. Soc. Am. A 21, 59-70 (2004).
    [CrossRef]
  17. T. Yoshimura, "Statistical properties of dynamic speckles," J. Opt. Soc. Am. A 3, 1032-1054 (1986).
    [CrossRef]
  18. T. Yoshimura, K. Nakagawa, and N. Wakabayashi, "Rotational and boiling motion of speckles in a two-lens imaging system," J. Opt. Soc. Am. A 3, 1018-1022 (1986).
    [CrossRef]
  19. H. Z. Cummins and E. R. Pike, eds., Photon Correlation and Light-Beating Spectroscopy, NATO Advanced Study Institute Series B: Physics (Plenum, Press, 1974).
  20. D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, "Speckle technologies for monitoring and imaging of tissues and tissue-like phantoms," in Handbook of Optical Medical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 987-1036.
  21. N. Takai, T. Iwai, and T. Asakura, "Correlation distance of dynamic speckles," Appl. Opt. 22, 170-177 (1983).
    [CrossRef] [PubMed]
  22. N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
    [CrossRef]
  23. A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
    [CrossRef] [PubMed]
  24. J. E. Scott, "Secondary and tertiary structures of hyaluronan in aqueous solution. Some biological consequences," Science of Hyaluronan Today, V. C. Hascall and M. Yanagishita, eds., http://www.glycoforum.gr.jp/science/hyaluronan/hyaluronanE.html (1998).
  25. G. C. Pimentel and A. L. McClennan, The Hydrogen Bond (Freeman, 1960), p. 189.
  26. G. Maret and P. E. Wolf, "Multiple light scattering from disordered media. The effect of Brownian motions of scatterers," Z. Phys. B 65, 409-413 (1987).
    [CrossRef]
  27. F. C. MacKintosh and S. John, "Diffusing-wave spectroscopy and multiple scattering of light in correlated random media," Phys. Rev. B 40, 2382-2406 (1989).
    [CrossRef]

2004 (2)

D. A. Zimnyakov, J. T. Oh, Yu. P. Sinichkin, V. A. Trifonov, and E. V. Gurianov, "Polarization-sensitive speckle spectroscopy of scattering media beyond the diffusion limit," J. Opt. Soc. Am. A 21, 59-70 (2004).
[CrossRef]

N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
[CrossRef]

2002 (2)

D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel'chenko, L. V. Kuznetsova, and V. N. Bagratashvili, "Speckle-contrast monitoring of tissue thermal modification," Appl. Opt. 41, 5989-5996 (2002).
[CrossRef] [PubMed]

V. Viasnoff, F. Lequeux, and D. J. Pine, "Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73, 2336-2344 (2002).
[CrossRef]

2001 (2)

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of non-ergodic media," Phys. Rev. E 63, 061404 (2001).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Romer, F. Scheffold, and P. Schurtenberger, "Sol-gel transition of concentrated colloidal suspensions," Phys. Rev. Lett. 85, 4980-4983 (2000).
[CrossRef] [PubMed]

1999 (1)

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

1998 (1)

J. E. Scott, "Secondary and tertiary structures of hyaluronan in aqueous solution. Some biological consequences," Science of Hyaluronan Today, V. C. Hascall and M. Yanagishita, eds., http://www.glycoforum.gr.jp/science/hyaluronan/hyaluronanE.html (1998).

1997 (1)

G. Richards and J. D. Briers, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range," in Proc. SPIE 2981, 160-171 (1997).
[CrossRef]

1996 (2)

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

S. E. Skipetrov and R. Maynard, "Dynamic multiple scattering of light in multilayer turbid media," Phys. Lett. A 217, 181-185 (1996).
[CrossRef]

1995 (1)

J. D. Briers and S. Webster, "Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
[CrossRef]

1989 (1)

F. C. MacKintosh and S. John, "Diffusing-wave spectroscopy and multiple scattering of light in correlated random media," Phys. Rev. B 40, 2382-2406 (1989).
[CrossRef]

1987 (2)

G. Maret and P. E. Wolf, "Multiple light scattering from disordered media. The effect of Brownian motions of scatterers," Z. Phys. B 65, 409-413 (1987).
[CrossRef]

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

1986 (3)

1983 (1)

1982 (1)

J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophthalmol. Visual Sci. 22, 255-259 (1982).

1981 (1)

A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
[CrossRef]

Agafonov, D. N.

Asakura, T.

Averkiev, S. V.

N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
[CrossRef]

Bagratashvili, V. N.

N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
[CrossRef]

D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel'chenko, L. V. Kuznetsova, and V. N. Bagratashvili, "Speckle-contrast monitoring of tissue thermal modification," Appl. Opt. 41, 5989-5996 (2002).
[CrossRef] [PubMed]

Blackwell, J.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Boas, D. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

G. Richards and J. D. Briers, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range," in Proc. SPIE 2981, 160-171 (1997).
[CrossRef]

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. D. Briers and S. Webster, "Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
[CrossRef]

J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophthalmol. Visual Sci. 22, 255-259 (1982).

A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
[CrossRef]

D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, "Speckle technologies for monitoring and imaging of tissues and tissue-like phantoms," in Handbook of Optical Medical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 987-1036.

Caplan, A. I.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Carrino, D. A.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Cummins, H. Z.

H. Z. Cummins and E. R. Pike, eds., Photon Correlation and Light-Beating Spectroscopy, NATO Advanced Study Institute Series B: Physics (Plenum, Press, 1974).

Dunn, A. K.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher, M. Peukert, and E. Roth, "Visualization and measurement of retinal blood flow by means of laser speckle photography," Opt. Eng. 25, 731-735 (1986).

J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophthalmol. Visual Sci. 22, 255-259 (1982).

A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
[CrossRef]

Gupta, R.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Gurianov, E. V.

He, X. W.

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Ignatieva, N. Yu.

N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
[CrossRef]

Iwai, T.

Jamieson, A. M.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

John, S.

F. C. MacKintosh and S. John, "Diffusing-wave spectroscopy and multiple scattering of light in correlated random media," Phys. Rev. B 40, 2382-2406 (1989).
[CrossRef]

Kuznetsova, L. V.

Lequeux, F.

V. Viasnoff, F. Lequeux, and D. J. Pine, "Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73, 2336-2344 (2002).
[CrossRef]

Lunin, V. V.

N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
[CrossRef]

MacKintosh, F. C.

F. C. MacKintosh and S. John, "Diffusing-wave spectroscopy and multiple scattering of light in correlated random media," Phys. Rev. B 40, 2382-2406 (1989).
[CrossRef]

Maiorova, A. F.

N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Maret, G.

G. Maret and P. E. Wolf, "Multiple light scattering from disordered media. The effect of Brownian motions of scatterers," Z. Phys. B 65, 409-413 (1987).
[CrossRef]

Maynard, R.

S. E. Skipetrov and R. Maynard, "Dynamic multiple scattering of light in multilayer turbid media," Phys. Lett. A 217, 181-185 (1996).
[CrossRef]

McClennan, A. L.

G. C. Pimentel and A. L. McClennan, The Hydrogen Bond (Freeman, 1960), p. 189.

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Nakagawa, K.

Nilsson, G. E.

G. E. Nilsson, E. G. Salerud, N. O. T. Stromberg, and K. Wardell, "Laser Doppler perfusion monitoring and imaging," in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 15-1-15-24.

Oh, J. T.

Ohno, H.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Omel'chenko, A. I.

Peukert, M.

A. F. Fercher, M. Peukert, and E. Roth, "Visualization and measurement of retinal blood flow by means of laser speckle photography," Opt. Eng. 25, 731-735 (1986).

Pike, E. R.

H. Z. Cummins and E. R. Pike, eds., Photon Correlation and Light-Beating Spectroscopy, NATO Advanced Study Institute Series B: Physics (Plenum, Press, 1974).

Pimentel, G. C.

G. C. Pimentel and A. L. McClennan, The Hydrogen Bond (Freeman, 1960), p. 189.

Pine, D. J.

V. Viasnoff, F. Lequeux, and D. J. Pine, "Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73, 2336-2344 (2002).
[CrossRef]

Reihanian, H.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Richards, G.

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

G. Richards and J. D. Briers, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range," in Proc. SPIE 2981, 160-171 (1997).
[CrossRef]

Romer, S.

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of non-ergodic media," Phys. Rev. E 63, 061404 (2001).
[CrossRef]

S. Romer, F. Scheffold, and P. Schurtenberger, "Sol-gel transition of concentrated colloidal suspensions," Phys. Rev. Lett. 85, 4980-4983 (2000).
[CrossRef] [PubMed]

Rosenberg, L. C.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Roth, E.

A. F. Fercher, M. Peukert, and E. Roth, "Visualization and measurement of retinal blood flow by means of laser speckle photography," Opt. Eng. 25, 731-735 (1986).

Salerud, E. G.

G. E. Nilsson, E. G. Salerud, N. O. T. Stromberg, and K. Wardell, "Laser Doppler perfusion monitoring and imaging," in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 15-1-15-24.

Scheffold, F.

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of non-ergodic media," Phys. Rev. E 63, 061404 (2001).
[CrossRef]

S. Romer, F. Scheffold, and P. Schurtenberger, "Sol-gel transition of concentrated colloidal suspensions," Phys. Rev. Lett. 85, 4980-4983 (2000).
[CrossRef] [PubMed]

Schurtenberger, P.

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of non-ergodic media," Phys. Rev. E 63, 061404 (2001).
[CrossRef]

S. Romer, F. Scheffold, and P. Schurtenberger, "Sol-gel transition of concentrated colloidal suspensions," Phys. Rev. Lett. 85, 4980-4983 (2000).
[CrossRef] [PubMed]

Scott, J. E.

J. E. Scott, "Secondary and tertiary structures of hyaluronan in aqueous solution. Some biological consequences," Science of Hyaluronan Today, V. C. Hascall and M. Yanagishita, eds., http://www.glycoforum.gr.jp/science/hyaluronan/hyaluronanE.html (1998).

Sinichkin, Yu. P.

Skipetrov, S. E.

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of non-ergodic media," Phys. Rev. E 63, 061404 (2001).
[CrossRef]

S. E. Skipetrov and R. Maynard, "Dynamic multiple scattering of light in multilayer turbid media," Phys. Lett. A 217, 181-185 (1996).
[CrossRef]

Sobol, E. N.

N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
[CrossRef]

Stromberg, N. O. T.

G. E. Nilsson, E. G. Salerud, N. O. T. Stromberg, and K. Wardell, "Laser Doppler perfusion monitoring and imaging," in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 15-1-15-24.

Sviridov, A. P.

Takai, N.

Tang, L. H.

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Trifonov, V. A.

Tuchin, V. V.

D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, "Speckle technologies for monitoring and imaging of tissues and tissue-like phantoms," in Handbook of Optical Medical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 987-1036.

Viasnoff, V.

V. Viasnoff, F. Lequeux, and D. J. Pine, "Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73, 2336-2344 (2002).
[CrossRef]

Wakabayashi, N.

Wardell, K.

G. E. Nilsson, E. G. Salerud, N. O. T. Stromberg, and K. Wardell, "Laser Doppler perfusion monitoring and imaging," in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 15-1-15-24.

Webster, S.

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. D. Briers and S. Webster, "Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Wolf, P. E.

G. Maret and P. E. Wolf, "Multiple light scattering from disordered media. The effect of Brownian motions of scatterers," Z. Phys. B 65, 409-413 (1987).
[CrossRef]

Yoshimura, T.

Zimnyakov, D. A.

Appl. Opt. (2)

Carbohydr. Res. (1)

A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophthalmol. Visual Sci. 22, 255-259 (1982).

J. Biomed. Opt. (2)

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Opt. Commun. (2)

A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
[CrossRef]

J. D. Briers and S. Webster, "Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995).
[CrossRef]

Opt. Eng. (1)

A. F. Fercher, M. Peukert, and E. Roth, "Visualization and measurement of retinal blood flow by means of laser speckle photography," Opt. Eng. 25, 731-735 (1986).

Phys. Lett. A (1)

S. E. Skipetrov and R. Maynard, "Dynamic multiple scattering of light in multilayer turbid media," Phys. Lett. A 217, 181-185 (1996).
[CrossRef]

Phys. Rev. B (1)

F. C. MacKintosh and S. John, "Diffusing-wave spectroscopy and multiple scattering of light in correlated random media," Phys. Rev. B 40, 2382-2406 (1989).
[CrossRef]

Phys. Rev. E (1)

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of non-ergodic media," Phys. Rev. E 63, 061404 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

S. Romer, F. Scheffold, and P. Schurtenberger, "Sol-gel transition of concentrated colloidal suspensions," Phys. Rev. Lett. 85, 4980-4983 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

G. Richards and J. D. Briers, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range," in Proc. SPIE 2981, 160-171 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Viasnoff, F. Lequeux, and D. J. Pine, "Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73, 2336-2344 (2002).
[CrossRef]

Thermochim. Acta (1)

N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004).
[CrossRef]

Z. Phys. B (1)

G. Maret and P. E. Wolf, "Multiple light scattering from disordered media. The effect of Brownian motions of scatterers," Z. Phys. B 65, 409-413 (1987).
[CrossRef]

Other (6)

J. E. Scott, "Secondary and tertiary structures of hyaluronan in aqueous solution. Some biological consequences," Science of Hyaluronan Today, V. C. Hascall and M. Yanagishita, eds., http://www.glycoforum.gr.jp/science/hyaluronan/hyaluronanE.html (1998).

G. C. Pimentel and A. L. McClennan, The Hydrogen Bond (Freeman, 1960), p. 189.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

G. E. Nilsson, E. G. Salerud, N. O. T. Stromberg, and K. Wardell, "Laser Doppler perfusion monitoring and imaging," in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 15-1-15-24.

H. Z. Cummins and E. R. Pike, eds., Photon Correlation and Light-Beating Spectroscopy, NATO Advanced Study Institute Series B: Physics (Plenum, Press, 1974).

D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, "Speckle technologies for monitoring and imaging of tissues and tissue-like phantoms," in Handbook of Optical Medical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 987-1036.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Multicascade transformation of the optical field by the bundle-based full-field analyzer. 1, object; L 1, image-transferring component; 2, fiber-optic bundle; 3, detector; x ¯ = ( x , y ) , object plane; X ¯ = ( X , Y ) , image plane (input plane of the bundle); x ¯ ξ = ( x ξ , y ξ ) , output plane of the bundle; x ¯ 2 = ( x 2 , y 2 ) , detector plane.

Fig. 2
Fig. 2

Theoretical dependencies of V T ˜ in the image plane on T ˜ / τ c , o for the case of a soft aperture of’ L 1. Solid curve, ΔΩ r ¯ 0 ; dashed curve, Δ Ω = r ¯ 0 ; dotted curve, Δ Ω = r ¯ 0 . Inset: dependencies of the characteristic exposure time on Δ Ω = r ¯ 0 . Solid curve, uniform distribution of τd; dashed curve, quadratic model; dotted curve, linear model.

Fig. 3
Fig. 3

(a) Scheme of the experimental setup with the bundle-based full-field analyzer. 1, He–Ne laser; 2, telescopic system; 3, object; 4, image-transferring element; 5, fiber-optic bundle; 6, CCD detector; 7, erbium laser; 8, light-delivering fiber; 9, thermograph. (b) Scheme of the experimental setup with the LASCA modality. 1, He–Ne laser; 2, telescopic system; 3, object; 4, CCD camera; 5, erbium laser; 6, light-delivering fiber; 7, thermograph, uppergraph; the temperature distributions across the surface of a treatment zone at various stages of modification: 1, tissue heating; 2, quasi-stationary phase of modification.

Fig. 4
Fig. 4

(a) Normalized temporal correlation functions of speckle intensity fluctuations in the detector plane. 1, tissue heating (the temperature in the central region of the treatment zone is ∼50 °C); 2, the quasi-stationary phase of tissue modification (the temperature is ∼68 °C). (b) and (c) Normalized spatial correlation functions of dynamic speckle patterns in the detector plane: (b) the normalized spatial autocorrelation function, (c) the cross-correlation function for two frames with the time delay Δτ approximately equal to 2.5 τc,detector. The scale for c graphs. (b) and (c) are the same.

Fig. 5
Fig. 5

(a) Dependencies of the tissue temperature in the central region of the treatment zone on the time lapse. Inset displays the looplike behavior of V T ˜ ( T ) (the output power of the erbium laser is 4.5 W; I, tissue heating; II, modification; III, thermal relaxation). (b) The dependencies of V T ˜ on the time lapse (bundle-based analyzer). (c) The same as in (b) but for the LASCA modality (IR laser output power is 4.5 W; low-amplitude fluctuations related to nonergodic behavior of the speckle-modulated image are marked by arrows).

Fig. 6
Fig. 6

Values of ln ( Δ V T ˜ ) obtained with the bundle-based analyzer (1–3) and the LASCA modality (4) and plotted against the inverse absolute temperature in the central region of the treatment zone. The output power of the erbium laser is 1, 4.5 W; 2, 4.2 W; 3, 4.8 W; 4, 4.5 W.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

G 1 ( X ¯ 1 , X ¯ 2 , t 1 , t 2 ) = E ( X ¯ 1 , t 1 ) E * ( X ¯ 2 , t 2 ) = E ( x ¯ 1 , t 1 ) E * ( x ¯ 2 , t 2 ) × K ( X ¯ 1 , x ¯ 1 ) K * ( X ¯ 2 , x ¯ 2 ) d x ¯ 1 d x ¯ 2 .
g 2 ( τ ) = I ( X ¯ , t ) I ( X ¯ , t + τ ) I ( X ¯ , t ) 2 = 1 + | g 1 ( τ ) | 2 ,
V T ˜ = { 1 T ˜ 0 T ˜ [ g 2 ( τ ) 1 ] d τ } 0.5 ,
E ( x 2 , y 2 , t ) i N E i ( t ) exp { j [ ϕ i ( t ) + ϕ i s ] } × exp { π j Z λ [ ( x 2 x i ξ ) 2 + ( y 2 y i ξ ) 2 ] } ,
I ( x 2 , y 2 , t ) | E ( x 2 , y 2 , t ) | 2 i = 1 N | E i ( t ) | 2 + i i E i ( t ) E i ( t ) cos { [ φ i ( t ) φ i ( t ) ] + [ Φ i Φ i ] } ,
G 2 ( τ ) = I ( x 2 , y 2 , t ) I ( x 2 , y 2 , t + τ ) = i = 1 N i = 1 N I i ( t ) I i ( t + τ ) ,
G 2 ( τ ) N G 2 , s ( τ ) + k = 1 k max = N 1 G 2 , k ( τ ) P ( k ) ,
g 2 ( Δ x 2 , Δ y 2 , τ ) = [ I ( x 2 + Δ x 2 , y 2 + Δ y 2 , t + τ ) I ] × [ I ( x 2 , y 2 , t ) I ] / [ I 2 I 2 ] .
| G 1 ( τ ) | = | [ i = 1 N ˜ E i exp ( j ϕ i ) ] [ i = 1 N ˜ N ˜ ( τ ) E i exp ( j ϕ i ) + k = 1 N ˜ ( τ ) E k exp ( j ϕ k ) ] * | ,
| g 1 ( τ ) | = | G 1 ( τ ) | / I = 1 ρ ˜ ( τ ) ,
[ g 2 ( τ ) 1 ] τ 0 = | g 1 ( τ ) | τ 0 2 1 2 ρ ˜ ( τ ) τ 0 .

Metrics