Abstract

We consider characterization of a near-field optical probe in terms of detection efficiency of different spatial frequencies associated with propagating and evanescent field components. The former are both detected with and radiated from an etched single-mode fiber tip, showing reciprocity of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe configuration, numerical simulations of detection efficiency based on the eigenmode expansion technique are carried out for different tip apex angles. The detection roll-off for high spatial frequencies observed in the experiment and obtained during the simulations is fitted using a simple expression for the transfer function, which is derived by introducing an effective point of (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  2. J. C. Weeber, F. de Fornel, and J. P. Goudonnet, "Numerical study of the tip-sample interaction in the photon scanning tunneling microscope," Opt. Commun. 126, 285-292 (1996).
    [CrossRef]
  3. D. P. Tsai, Z. Wang, and M. Moskovits, "Estimating the effective optical aperture of a tapered fiber probe in PSTM imaging," in Scanning Probe Microscopies II, C.C.Williams, ed., Proc. SPIE 1855,93-104 (1993).
  4. A. J. Meixner, M. A. Bopp, and G. Tarrack, "Direct measurement of standing evanescent waves with a photon-scanning tunneling microscope," Appl. Opt. 33, 7995-8000 (1994).
    [CrossRef] [PubMed]
  5. D. Van Labeke and D. Barchiesi, "Probes for scanning tunneling optical microscopy: a theoretical comparison," J. Opt. Soc. Am. A 10, 2193-2201 (1993).
    [CrossRef]
  6. R. Carminati and J.-J. Greffet, "2-Dimensional numerical-simulation of the photon scanning tunneling microscope--concept of transfer-function," Opt. Commun. 116, 316-321 (1995).
    [CrossRef]
  7. J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
    [CrossRef] [PubMed]
  8. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
    [CrossRef]
  9. S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plasmon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
    [CrossRef]
  10. A. G. Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, and J. T. Boyd, "Near-field measurements of optical channel wave-guides and directional-couplers," Appl. Phys. Lett. 65, 947-949 (1994).
    [CrossRef]
  11. S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
    [CrossRef]
  12. S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, "Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror," J. Opt. Soc. Am. A 13, 2381-2392 (1996).
    [CrossRef]
  13. B. Vohnsen and S. I. Bozhevolnyi, "Optical characterization of probes for photon scanning tunnelling microscopy," J. Microsc. (Oxford) 194, 311-316 (1999).
    [CrossRef]
  14. S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, "Transfer functions in collection scanning near-field optical microscopy," Opt. Commun. 172, 171-179 (1999).
    [CrossRef]
  15. J.-J. Greffet and R. Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
    [CrossRef]
  16. L. Novotny, D. W. Pohl, and P. Regli, "Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope," J. Opt. Soc. Am. A 11, 1768-1779 (1994).
    [CrossRef]
  17. B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, "Influence of detection conditions on near-field optical imaging," J. Appl. Phys. 84, 5873-5882 (1998).
    [CrossRef]
  18. P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
    [CrossRef]
  19. N. Gregersen, B. Tromborg, V. S. Volkov, S. I. Bozhevolnyi, and J. Holm, "Topography characterization of a deep grating using near-field imaging," Appl. Opt. 45, 117-121 (2006).
    [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998).
    [CrossRef]
  21. A. Nesci, R. Dändliker, M. Salt, and H. P. Herzig, "Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution," Opt. Commun. 205, 229-238 (2002).
    [CrossRef]
  22. T. Grosjean and D. Courjon, "Polarization filtering induced by imaging systems: effect on image structure," Phys. Rev. E 67, 046611 (2003).
    [CrossRef]
  23. S. I. Bozhevolnyi, "Localization phenomena in elastic surface-polariton scattering caused by surface roughness," Phys. Rev. B 54, 8177-8185 (1996).
    [CrossRef]

2006 (1)

2003 (1)

T. Grosjean and D. Courjon, "Polarization filtering induced by imaging systems: effect on image structure," Phys. Rev. E 67, 046611 (2003).
[CrossRef]

2002 (1)

A. Nesci, R. Dändliker, M. Salt, and H. P. Herzig, "Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution," Opt. Commun. 205, 229-238 (2002).
[CrossRef]

2001 (1)

P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
[CrossRef]

1999 (3)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

B. Vohnsen and S. I. Bozhevolnyi, "Optical characterization of probes for photon scanning tunnelling microscopy," J. Microsc. (Oxford) 194, 311-316 (1999).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, "Transfer functions in collection scanning near-field optical microscopy," Opt. Commun. 172, 171-179 (1999).
[CrossRef]

1998 (4)

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plasmon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998).
[CrossRef]

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, "Influence of detection conditions on near-field optical imaging," J. Appl. Phys. 84, 5873-5882 (1998).
[CrossRef]

1997 (1)

J.-J. Greffet and R. Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

1996 (4)

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, "Numerical study of the tip-sample interaction in the photon scanning tunneling microscope," Opt. Commun. 126, 285-292 (1996).
[CrossRef]

J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, "Localization phenomena in elastic surface-polariton scattering caused by surface roughness," Phys. Rev. B 54, 8177-8185 (1996).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, "Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror," J. Opt. Soc. Am. A 13, 2381-2392 (1996).
[CrossRef]

1995 (1)

R. Carminati and J.-J. Greffet, "2-Dimensional numerical-simulation of the photon scanning tunneling microscope--concept of transfer-function," Opt. Commun. 116, 316-321 (1995).
[CrossRef]

1994 (3)

1993 (1)

Allovon, M.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Baets, R.

P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
[CrossRef]

Barchiesi, D.

Barthe, F.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Berntsen, S.

Bielefeldt, H.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, "Influence of detection conditions on near-field optical imaging," J. Appl. Phys. 84, 5873-5882 (1998).
[CrossRef]

Bienstman, P.

P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
[CrossRef]

Boccara, A. C.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Bopp, M. A.

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
[CrossRef] [PubMed]

Bourzeix, S.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Boyd, J. T.

A. G. Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, and J. T. Boyd, "Near-field measurements of optical channel wave-guides and directional-couplers," Appl. Phys. Lett. 65, 947-949 (1994).
[CrossRef]

Bozhevolnaya, E. A.

Bozhevolnyi, S. I.

N. Gregersen, B. Tromborg, V. S. Volkov, S. I. Bozhevolnyi, and J. Holm, "Topography characterization of a deep grating using near-field imaging," Appl. Opt. 45, 117-121 (2006).
[CrossRef] [PubMed]

B. Vohnsen and S. I. Bozhevolnyi, "Optical characterization of probes for photon scanning tunnelling microscopy," J. Microsc. (Oxford) 194, 311-316 (1999).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, "Transfer functions in collection scanning near-field optical microscopy," Opt. Commun. 172, 171-179 (1999).
[CrossRef]

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plasmon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998).
[CrossRef]

S. I. Bozhevolnyi, "Localization phenomena in elastic surface-polariton scattering caused by surface roughness," Phys. Rev. B 54, 8177-8185 (1996).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, "Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror," J. Opt. Soc. Am. A 13, 2381-2392 (1996).
[CrossRef]

Bruno, A.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Carminati, R.

J.-J. Greffet and R. Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

R. Carminati and J.-J. Greffet, "2-Dimensional numerical-simulation of the photon scanning tunneling microscope--concept of transfer-function," Opt. Commun. 116, 316-321 (1995).
[CrossRef]

Chen, Y.

J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
[CrossRef] [PubMed]

Choo, A. G.

A. G. Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, and J. T. Boyd, "Near-field measurements of optical channel wave-guides and directional-couplers," Appl. Phys. Lett. 65, 947-949 (1994).
[CrossRef]

Coello, V.

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plasmon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998).
[CrossRef]

Courjon, D.

T. Grosjean and D. Courjon, "Polarization filtering induced by imaging systems: effect on image structure," Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Dändliker, R.

A. Nesci, R. Dändliker, M. Salt, and H. P. Herzig, "Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution," Opt. Commun. 205, 229-238 (2002).
[CrossRef]

De Brabander, G. N.

A. G. Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, and J. T. Boyd, "Near-field measurements of optical channel wave-guides and directional-couplers," Appl. Phys. Lett. 65, 947-949 (1994).
[CrossRef]

de Fornel, F.

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, "Numerical study of the tip-sample interaction in the photon scanning tunneling microscope," Opt. Commun. 126, 285-292 (1996).
[CrossRef]

Dereux, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
[CrossRef] [PubMed]

Girard, C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, "Numerical study of the tip-sample interaction in the photon scanning tunneling microscope," Opt. Commun. 126, 285-292 (1996).
[CrossRef]

J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
[CrossRef] [PubMed]

Greffet, J.-J.

J.-J. Greffet and R. Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

R. Carminati and J.-J. Greffet, "2-Dimensional numerical-simulation of the photon scanning tunneling microscope--concept of transfer-function," Opt. Commun. 116, 316-321 (1995).
[CrossRef]

Gregersen, N.

Grosjean, T.

T. Grosjean and D. Courjon, "Polarization filtering induced by imaging systems: effect on image structure," Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, "Influence of detection conditions on near-field optical imaging," J. Appl. Phys. 84, 5873-5882 (1998).
[CrossRef]

Heinzelmann, H.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, "Influence of detection conditions on near-field optical imaging," J. Appl. Phys. 84, 5873-5882 (1998).
[CrossRef]

Herzig, H. P.

A. Nesci, R. Dändliker, M. Salt, and H. P. Herzig, "Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution," Opt. Commun. 205, 229-238 (2002).
[CrossRef]

Holm, J.

Jackson, H. E.

A. G. Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, and J. T. Boyd, "Near-field measurements of optical channel wave-guides and directional-couplers," Appl. Phys. Lett. 65, 947-949 (1994).
[CrossRef]

Kim, W.

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998).
[CrossRef]

Krenn, J. R.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Leitner, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Licoppe, C.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Markel, V. A.

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998).
[CrossRef]

Meixner, A. J.

Mersali, B.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Mignard, F.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Moison, J. M.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

Moskovits, M.

D. P. Tsai, Z. Wang, and M. Moskovits, "Estimating the effective optical aperture of a tapered fiber probe in PSTM imaging," in Scanning Probe Microscopies II, C.C.Williams, ed., Proc. SPIE 1855,93-104 (1993).

Nesci, A.

A. Nesci, R. Dändliker, M. Salt, and H. P. Herzig, "Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution," Opt. Commun. 205, 229-238 (2002).
[CrossRef]

Novotny, L.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, "Influence of detection conditions on near-field optical imaging," J. Appl. Phys. 84, 5873-5882 (1998).
[CrossRef]

L. Novotny, D. W. Pohl, and P. Regli, "Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope," J. Opt. Soc. Am. A 11, 1768-1779 (1994).
[CrossRef]

Pohl, D. W.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, "Influence of detection conditions on near-field optical imaging," J. Appl. Phys. 84, 5873-5882 (1998).
[CrossRef]

L. Novotny, D. W. Pohl, and P. Regli, "Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope," J. Opt. Soc. Am. A 11, 1768-1779 (1994).
[CrossRef]

Regli, P.

Salt, M.

A. Nesci, R. Dändliker, M. Salt, and H. P. Herzig, "Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution," Opt. Commun. 205, 229-238 (2002).
[CrossRef]

Schider, G.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Shalaev, V. M.

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998).
[CrossRef]

Tarrack, G.

Thiel, U.

A. G. Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, and J. T. Boyd, "Near-field measurements of optical channel wave-guides and directional-couplers," Appl. Phys. Lett. 65, 947-949 (1994).
[CrossRef]

Tromborg, B.

Tsai, D. P.

D. P. Tsai, Z. Wang, and M. Moskovits, "Estimating the effective optical aperture of a tapered fiber probe in PSTM imaging," in Scanning Probe Microscopies II, C.C.Williams, ed., Proc. SPIE 1855,93-104 (1993).

Van Labeke, D.

Vohnsen, B.

B. Vohnsen and S. I. Bozhevolnyi, "Optical characterization of probes for photon scanning tunnelling microscopy," J. Microsc. (Oxford) 194, 311-316 (1999).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, "Transfer functions in collection scanning near-field optical microscopy," Opt. Commun. 172, 171-179 (1999).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, "Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror," J. Opt. Soc. Am. A 13, 2381-2392 (1996).
[CrossRef]

Volkov, V. S.

Wang, Z.

D. P. Tsai, Z. Wang, and M. Moskovits, "Estimating the effective optical aperture of a tapered fiber probe in PSTM imaging," in Scanning Probe Microscopies II, C.C.Williams, ed., Proc. SPIE 1855,93-104 (1993).

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, "Numerical study of the tip-sample interaction in the photon scanning tunneling microscope," Opt. Commun. 126, 285-292 (1996).
[CrossRef]

J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. G. Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, and J. T. Boyd, "Near-field measurements of optical channel wave-guides and directional-couplers," Appl. Phys. Lett. 65, 947-949 (1994).
[CrossRef]

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, "Near-field optical imaging of light propagation in semiconductor waveguide structures," Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

J. Appl. Phys. (1)

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, "Influence of detection conditions on near-field optical imaging," J. Appl. Phys. 84, 5873-5882 (1998).
[CrossRef]

J. Microsc. (1)

B. Vohnsen and S. I. Bozhevolnyi, "Optical characterization of probes for photon scanning tunnelling microscopy," J. Microsc. (Oxford) 194, 311-316 (1999).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (4)

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, "Transfer functions in collection scanning near-field optical microscopy," Opt. Commun. 172, 171-179 (1999).
[CrossRef]

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, "Numerical study of the tip-sample interaction in the photon scanning tunneling microscope," Opt. Commun. 126, 285-292 (1996).
[CrossRef]

R. Carminati and J.-J. Greffet, "2-Dimensional numerical-simulation of the photon scanning tunneling microscope--concept of transfer-function," Opt. Commun. 116, 316-321 (1995).
[CrossRef]

A. Nesci, R. Dändliker, M. Salt, and H. P. Herzig, "Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution," Opt. Commun. 205, 229-238 (2002).
[CrossRef]

Opt. Quantum Electron. (1)

P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
[CrossRef]

Phys. Rev. B (3)

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998).
[CrossRef]

S. I. Bozhevolnyi, "Localization phenomena in elastic surface-polariton scattering caused by surface roughness," Phys. Rev. B 54, 8177-8185 (1996).
[CrossRef]

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plasmon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
[CrossRef]

Phys. Rev. E (1)

T. Grosjean and D. Courjon, "Polarization filtering induced by imaging systems: effect on image structure," Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Prog. Surf. Sci. (1)

J.-J. Greffet and R. Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Other (2)

D. P. Tsai, Z. Wang, and M. Moskovits, "Estimating the effective optical aperture of a tapered fiber probe in PSTM imaging," in Scanning Probe Microscopies II, C.C.Williams, ed., Proc. SPIE 1855,93-104 (1993).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Coordinate system and schematics of near-field detection by a fiber tip. Point S situated at distance z 0 from the tip extremity represents an effective detection point at which coupling of the incident field to the fiber mode is considered to take place.

Fig. 2
Fig. 2

(Color online) (a) Fiber tip used in both far- and near-field measurements. (b) Experimental setup for the far-field measurements in collection mode along with (c) the results obtained for s (solid curve) and p polarization (dashed curve).

Fig. 3
Fig. 3

(Color online) (a) Schematics of a fiber tip used in illumination mode and the light distribution in front of the fiber tip produced by a CCD camera. (b) Far-field signal dependencies measured in illumination mode for s (solid curve) and p polarization (dashed curve).

Fig. 4
Fig. 4

(Color online) (a) Schematics of near-field measurements in collection mode: P, polarizer; F, focusing lens; M, rotational mirror to change angle α and thereby angle θ, which was kept larger than the critical angle of total internal reflection. (b) Signal dependencies obtained for s (solid curve) and p polarization (dashed curve). Fitting shown by thin solid lines is made for each curve as explained in Section 5.

Fig. 5
Fig. 5

(Color online) Two-dimensional geometry used in numerical simulations of the coupling process. The following parameters have been used in the simulations: λ = 633 nm, core diameter of 4 μm, core index of 1.459, cladding index of 1.457.

Fig. 6
Fig. 6

(Color online) Numerical results for the coupled (transmitted through the fiber) electric field amplitude obtained for (a) s and (b) p polarization and for different apex angles β (Fig. 5): 10° (dashed curve), 30° (dotted curve), 50° (dashed–dotted curve), and 70° (dashed–dotted–dotted curve). Note that in the evanescent field domain ( k / k 0 > 1) the data are multiplied by a factor of 500 for s polarization (all angles) and p polarization (for 10° and 30°) and by a factor of 2000 for p polarization and for 50° and 70°.

Fig. 7
Fig. 7

(Color online) Evanescent field domain of numerical results shown in Fig. 6 along with the fitted (as explained in Section 5) curves shown with solid lines. Marking of the curves simulated for different apex angles is as in Fig. 6.

Tables (1)

Tables Icon

Table 1 Fitting Parameters for Different Tip Apex Angles a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E ( r , 0 ) = 1 4 π 2 F ( k , 0 ) exp ( i k r ) d k ,
A y ( r ) = 1 4 π 2 H y y ( k ) F y ( k , 0 ) exp ( i k r ) d k ,
A x ( r ) = 1 4 π 2 [ H x x ( k ) F x ( k , 0 ) + H x z ( k ) F z ( k , 0 ) ] exp ( i k r ) d k ,
A y ( r ) = c E y ( r , z 0 ) ,
A x ( r ) = c E x ( r , z 0 ) + c E z ( r , z 0 ) .
H y y ( k ) F y ( k , 0 ) = c F y ( k , z 0 ) ,
H x x ( k ) F x ( k , 0 ) + H x z ( k ) F z ( k , 0 ) = c F x ( k , z 0 ) + c F z ( k , z 0 ) .
H x x ( k k 0 ) = H y y ( k k 0 ) = c exp ( z 0 k     2 k 0     2 ) ,
H x z ( k k 0 ) = c exp ( z 0 k     2 k 0     2 ) ,
H s ( k k 0 ) = A exp ( z 0 k     2 k 0     2 ) ,
H p ( k k 0 ) = B 1 ( k 0 / k ) 2 exp ( z 0 k     2 k 0     2 ) + C exp ( i φ ) exp ( z 0 k     2 k 0     2 ) .

Metrics