Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).

[CrossRef]

K. F. Ren, G. Grehan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt. 35, 2702-2710 (1996).

[CrossRef]
[PubMed]

J. A. Lock and J. T. Hodges, "Far-field scattering of an axisymmetric laser beam of arbitrary profile by an on-axis spherical particle," Appl. Opt. 35, 4283-4290 (1996).

[CrossRef]
[PubMed]

J. A. Lock and J. T. Hodges, "Far-field scattering of a non-Gaussian off-axis axisymmetric laser beam by a spherical particle," Appl. Opt. 35, 6605-6616 (1996).

[CrossRef]
[PubMed]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation: Errata," J. Opt. Soc. Am. A 12, 1605 (1995).

K. F. Ren, G. Grehan, and G. Gouesbet, "Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects," Opt. Commun. 108, 343-354 (1994).

[CrossRef]

J. A. Lock and T. A. McCollum, "Further thoughts on Newton's zero-order rainbow," Am. J. Phys. 62, 1082-1089 (1994).

[CrossRef]

E. A. Hovenac and J. A. Lock, "Assessing the contributions of surface waves and complex rays to the far-field Mie scattering by use of the Debye series," J. Opt. Soc. Am. A 9, 781-795 (1992).

[CrossRef]

F. Gilloteau, G. Grehan, and G. Gouesbet, "Optical levitation experiments to assess the validity of the generalized Lorenz-Mie theory," Appl. Opt. 31, 2942-2951 (1992).

[CrossRef]

R. Gussgard, T. Lindmo, and I. Brevic, "Calculation of the trapping force in a strongly focused laser beam," J. Opt. Soc. Am. B 9, 1922-1930 (1992).

[CrossRef]

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of the net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).

[CrossRef]

B. Maheu, G. Grehan, and G. Gouesbet, "Ray localization in Gaussian beams," Opt. Commun. 70, 259-262 (1989).

[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett , 11, 288-290 (1986).

[CrossRef]
[PubMed]

G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, 1985), p. 604, Eqs. (11.85) and (11.86).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), p. 123.

R. C. Weast (ed.), Handbook of Chemistry and Physics, 50th ed. (CRC, 1969), p. F36.

H. M. Nussenzveig, "High-frequency scattering by a transparent sphere. 1. Direct reflection and transmission," J. Math. Phys. 10, 82-124 (1969).

[CrossRef]

J. Happel and H. Bremmer, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Prentice-Hall, 1965), p. 330, Eqs. (7.4.37)-(7.4.39) and p. 331, Table 7.4.1.

M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 487, Eq. (11.4.42).

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).

[CrossRef]

L. Brillouin, "The scattering cross section of spheres for electromagnetic waves," J. Appl. Phys. 20, 1110-1125 (1949).

[CrossRef]

M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 487, Eq. (11.4.42).

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of the net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).

[CrossRef]

G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, 1985), p. 604, Eqs. (11.85) and (11.86).

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).

[CrossRef]

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett , 11, 288-290 (1986).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of the net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).

[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett , 11, 288-290 (1986).

[CrossRef]
[PubMed]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation: Errata," J. Opt. Soc. Am. A 12, 1605 (1995).

J. Happel and H. Bremmer, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Prentice-Hall, 1965), p. 330, Eqs. (7.4.37)-(7.4.39) and p. 331, Table 7.4.1.

L. Brillouin, "The scattering cross section of spheres for electromagnetic waves," J. Appl. Phys. 20, 1110-1125 (1949).

[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett , 11, 288-290 (1986).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett , 11, 288-290 (1986).

[CrossRef]
[PubMed]

K. F. Ren, G. Grehan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt. 35, 2702-2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Grehan, and G. Gouesbet, "Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects," Opt. Commun. 108, 343-354 (1994).

[CrossRef]

F. Gilloteau, G. Grehan, and G. Gouesbet, "Optical levitation experiments to assess the validity of the generalized Lorenz-Mie theory," Appl. Opt. 31, 2942-2951 (1992).

[CrossRef]

J.-P. Chevaillier, J. Fabre, G. Grehan, and G. Gouesbet, "Comparison of diffraction theory and generalized Lorenz-Mie theory for a sphere located on the axis of a laser beam," Appl. Opt. 29, 1293-1298 (1990).

[CrossRef]
[PubMed]

B. Maheu, G. Grehan, and G. Gouesbet, "Ray localization in Gaussian beams," Opt. Commun. 70, 259-262 (1989).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formalism," J. Opt. Soc. Am. A 5, 1427-1443 (1988).

[CrossRef]

K. F. Ren, G. Grehan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt. 35, 2702-2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Grehan, and G. Gouesbet, "Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects," Opt. Commun. 108, 343-354 (1994).

[CrossRef]

F. Gilloteau, G. Grehan, and G. Gouesbet, "Optical levitation experiments to assess the validity of the generalized Lorenz-Mie theory," Appl. Opt. 31, 2942-2951 (1992).

[CrossRef]

J.-P. Chevaillier, J. Fabre, G. Grehan, and G. Gouesbet, "Comparison of diffraction theory and generalized Lorenz-Mie theory for a sphere located on the axis of a laser beam," Appl. Opt. 29, 1293-1298 (1990).

[CrossRef]
[PubMed]

B. Maheu, G. Grehan, and G. Gouesbet, "Ray localization in Gaussian beams," Opt. Commun. 70, 259-262 (1989).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formalism," J. Opt. Soc. Am. A 5, 1427-1443 (1988).

[CrossRef]

J. Happel and H. Bremmer, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Prentice-Hall, 1965), p. 330, Eqs. (7.4.37)-(7.4.39) and p. 331, Table 7.4.1.

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation: Errata," J. Opt. Soc. Am. A 12, 1605 (1995).

J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. 1. Localized model description of an on-axis tighty focused laser beam with spherical aberration," Appl. Opt. 43, 2532-2544 (2004).

[CrossRef]
[PubMed]

J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. 2. On-axis trapping force," Appl. Opt. 43, 2545-2554 (2004).

[CrossRef]
[PubMed]

J. A. Lock and J. T. Hodges, "Far-field scattering of a non-Gaussian off-axis axisymmetric laser beam by a spherical particle," Appl. Opt. 35, 6605-6616 (1996).

[CrossRef]
[PubMed]

J. A. Lock and J. T. Hodges, "Far-field scattering of an axisymmetric laser beam of arbitrary profile by an on-axis spherical particle," Appl. Opt. 35, 4283-4290 (1996).

[CrossRef]
[PubMed]

J. A. Lock and T. A. McCollum, "Further thoughts on Newton's zero-order rainbow," Am. J. Phys. 62, 1082-1089 (1994).

[CrossRef]

J. A. Lock, "Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle," J. Opt. Soc. Am. A 10, 693-706 (1993).

[CrossRef]

E. A. Hovenac and J. A. Lock, "Assessing the contributions of surface waves and complex rays to the far-field Mie scattering by use of the Debye series," J. Opt. Soc. Am. A 9, 781-795 (1992).

[CrossRef]

B. Maheu, G. Grehan, and G. Gouesbet, "Ray localization in Gaussian beams," Opt. Commun. 70, 259-262 (1989).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formalism," J. Opt. Soc. Am. A 5, 1427-1443 (1988).

[CrossRef]

J. A. Lock and T. A. McCollum, "Further thoughts on Newton's zero-order rainbow," Am. J. Phys. 62, 1082-1089 (1994).

[CrossRef]

K. F. Ren, G. Grehan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt. 35, 2702-2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Grehan, and G. Gouesbet, "Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects," Opt. Commun. 108, 343-354 (1994).

[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of the net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).

[CrossRef]

M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 487, Eq. (11.4.42).

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation: Errata," J. Opt. Soc. Am. A 12, 1605 (1995).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), p. 123.

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation: Errata," J. Opt. Soc. Am. A 12, 1605 (1995).

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).

[CrossRef]

R. C. Weast (ed.), Handbook of Chemistry and Physics, 50th ed. (CRC, 1969), p. F36.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).

[CrossRef]

J. A. Lock and T. A. McCollum, "Further thoughts on Newton's zero-order rainbow," Am. J. Phys. 62, 1082-1089 (1994).

[CrossRef]

D. S. Langley and M. J. Morrell, "Rainbow-enhanced forward and backward glory scattering," Appl. Opt. 30, 3459-3467 (1991).

[CrossRef]
[PubMed]

J.-P. Chevaillier, J. Fabre, G. Grehan, and G. Gouesbet, "Comparison of diffraction theory and generalized Lorenz-Mie theory for a sphere located on the axis of a laser beam," Appl. Opt. 29, 1293-1298 (1990).

[CrossRef]
[PubMed]

F. Gilloteau, G. Grehan, and G. Gouesbet, "Optical levitation experiments to assess the validity of the generalized Lorenz-Mie theory," Appl. Opt. 31, 2942-2951 (1992).

[CrossRef]

J. A. Lock and J. T. Hodges, "Far-field scattering of an axisymmetric laser beam of arbitrary profile by an on-axis spherical particle," Appl. Opt. 35, 4283-4290 (1996).

[CrossRef]
[PubMed]

J. A. Lock and J. T. Hodges, "Far-field scattering of a non-Gaussian off-axis axisymmetric laser beam by a spherical particle," Appl. Opt. 35, 6605-6616 (1996).

[CrossRef]
[PubMed]

A. Rohrbach and E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Opt. 41, 2494-2507 (2002).

[CrossRef]
[PubMed]

K. F. Ren, G. Grehan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt. 35, 2702-2710 (1996).

[CrossRef]
[PubMed]

J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. 1. Localized model description of an on-axis tighty focused laser beam with spherical aberration," Appl. Opt. 43, 2532-2544 (2004).

[CrossRef]
[PubMed]

J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. 2. On-axis trapping force," Appl. Opt. 43, 2545-2554 (2004).

[CrossRef]
[PubMed]

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of the net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).

[CrossRef]

L. Brillouin, "The scattering cross section of spheres for electromagnetic waves," J. Appl. Phys. 20, 1110-1125 (1949).

[CrossRef]

H. M. Nussenzveig, "High-frequency scattering by a transparent sphere. 1. Direct reflection and transmission," J. Math. Phys. 10, 82-124 (1969).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formalism," J. Opt. Soc. Am. A 5, 1427-1443 (1988).

[CrossRef]

A. Rohrbach and E. H. K. Stelzer, "Optical trapping of dielectric particles in arbitrary fields," J. Opt. Soc. Am. A 18, 839-853 (2001).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation: Errata," J. Opt. Soc. Am. A 12, 1605 (1995).

E. A. Hovenac and J. A. Lock, "Assessing the contributions of surface waves and complex rays to the far-field Mie scattering by use of the Debye series," J. Opt. Soc. Am. A 9, 781-795 (1992).

[CrossRef]

J. A. Lock, "Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle," J. Opt. Soc. Am. A 10, 693-706 (1993).

[CrossRef]

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).

[CrossRef]

K. F. Ren, G. Grehan, and G. Gouesbet, "Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects," Opt. Commun. 108, 343-354 (1994).

[CrossRef]

B. Maheu, G. Grehan, and G. Gouesbet, "Ray localization in Gaussian beams," Opt. Commun. 70, 259-262 (1989).

[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett , 11, 288-290 (1986).

[CrossRef]
[PubMed]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).

[CrossRef]

In Ref. 13 it was incorrectly stated that Refs. 5 and 6 calculated the trapping force by use of Rayleigh scattering.

M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 487, Eq. (11.4.42).

R. C. Weast (ed.), Handbook of Chemistry and Physics, 50th ed. (CRC, 1969), p. F36.

J. Happel and H. Bremmer, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Prentice-Hall, 1965), p. 330, Eqs. (7.4.37)-(7.4.39) and p. 331, Table 7.4.1.

G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, 1985), p. 604, Eqs. (11.85) and (11.86).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), p. 123.