Abstract

An experimental investigation is described of a terbium luminescence sensor for continuous collection and detection of bacterial endospores suspended in the atmosphere. A sensor is presented that continuously monitors and rapidly detects small concentrations of aerosolized bacterial endospores. The aerosol particles are collected by an impinger from which terbium dipicolinate photoluminescence is measured. A preliminary test of the sensor is described with Bacillus globigii endospores that were dispersed in an aerosol chamber. Another experiment is described showing that evaporation of water from the impinger limits operation time of the sensor to a few hours.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Buttner, K. Willeke, and S. A. Grinshpun, "Sampling and Analysis of Airborne Microorganisms," Manual of Environmental Microbiology (ASM Press, 1997), pp. 629-640.
  2. S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
    [CrossRef]
  3. O. Pahl, V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes, "Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange," J. Aerosol Sci. 28, 427-435 (1997).
    [CrossRef]
  4. C. S. Li, M. L. Hao, C. W. Chang, and C. S. Wang, "Evaluation of Microbial Samplers for Bacterial Microorganisms," Aerosol Sci. Technol. 30, 100-108 (1999).
    [CrossRef]
  5. P. P. Hairston, J. Ho, and F. R. Quant, "Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence," J. Aerosol. Sci. 28, 471-482 (1997).
    [CrossRef] [PubMed]
  6. D. L. Rosen, "Bacterial endospore detection using photoluminescence from terbium dipicolinate," Rev. Anal. Chem. 18, 1-21 (1999).
    [CrossRef]
  7. D. L. Rosen and S. Niles, "Chelation number of terbium dipicolinate: Effects on photoluminescence lifetime and absorption," Appl. Spectrosc. 55, 208-216 (2001).
    [CrossRef]
  8. A. A. Hindle and E. A. H. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst 124, 1599-1604 (1999).
    [CrossRef]
  9. P. A. Jensen, W. F. Todd, G. N. Davis, and P. V. Scarpino, "Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria," Am. Ind. Hyg. Assoc. J. 53, 660-667 (1992).
    [CrossRef] [PubMed]
  10. K. Willeke, X. Lin, and S. A. Grinshpun, "Improved aerosol collection by combined impaction and centrifugal motion," Aerosol Sci. Technol. 28, 439-456 (1998).
    [CrossRef]
  11. E. D. Lester and A. Ponce, "An anthrax smoke detector: Online detection of aerosolized bacterial spores," IEEE Eng. Med. Biol. Mag. 21, 38-42 (2002).
    [CrossRef] [PubMed]
  12. E. D. Lester, G. Bearman, and A. Ponce, "A second-generation anthrax smoke detector: an inexpensive front-end monitor that detects airborne bacterial spores," IEEE Eng. Med. Biol. Mag. 23, 130-135 (2004).
    [CrossRef] [PubMed]
  13. G. Jones and V. I. Vulev, "Medium effects on the photophysical properties of terbium (III) complexes with pyridine-2, 6 dicarboxylate," Photochem. Photobiol. Sci. 1, 925-933 (2002).
    [CrossRef]

2004 (1)

E. D. Lester, G. Bearman, and A. Ponce, "A second-generation anthrax smoke detector: an inexpensive front-end monitor that detects airborne bacterial spores," IEEE Eng. Med. Biol. Mag. 23, 130-135 (2004).
[CrossRef] [PubMed]

2002 (2)

G. Jones and V. I. Vulev, "Medium effects on the photophysical properties of terbium (III) complexes with pyridine-2, 6 dicarboxylate," Photochem. Photobiol. Sci. 1, 925-933 (2002).
[CrossRef]

E. D. Lester and A. Ponce, "An anthrax smoke detector: Online detection of aerosolized bacterial spores," IEEE Eng. Med. Biol. Mag. 21, 38-42 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (3)

D. L. Rosen, "Bacterial endospore detection using photoluminescence from terbium dipicolinate," Rev. Anal. Chem. 18, 1-21 (1999).
[CrossRef]

A. A. Hindle and E. A. H. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst 124, 1599-1604 (1999).
[CrossRef]

C. S. Li, M. L. Hao, C. W. Chang, and C. S. Wang, "Evaluation of Microbial Samplers for Bacterial Microorganisms," Aerosol Sci. Technol. 30, 100-108 (1999).
[CrossRef]

1998 (1)

K. Willeke, X. Lin, and S. A. Grinshpun, "Improved aerosol collection by combined impaction and centrifugal motion," Aerosol Sci. Technol. 28, 439-456 (1998).
[CrossRef]

1997 (3)

P. P. Hairston, J. Ho, and F. R. Quant, "Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence," J. Aerosol. Sci. 28, 471-482 (1997).
[CrossRef] [PubMed]

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

O. Pahl, V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes, "Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange," J. Aerosol Sci. 28, 427-435 (1997).
[CrossRef]

1992 (1)

P. A. Jensen, W. F. Todd, G. N. Davis, and P. V. Scarpino, "Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria," Am. Ind. Hyg. Assoc. J. 53, 660-667 (1992).
[CrossRef] [PubMed]

Bearman, G.

E. D. Lester, G. Bearman, and A. Ponce, "A second-generation anthrax smoke detector: an inexpensive front-end monitor that detects airborne bacterial spores," IEEE Eng. Med. Biol. Mag. 23, 130-135 (2004).
[CrossRef] [PubMed]

Brenner, K. P.

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

Buttner, M. P.

M. P. Buttner, K. Willeke, and S. A. Grinshpun, "Sampling and Analysis of Airborne Microorganisms," Manual of Environmental Microbiology (ASM Press, 1997), pp. 629-640.

Chang, C. W.

C. S. Li, M. L. Hao, C. W. Chang, and C. S. Wang, "Evaluation of Microbial Samplers for Bacterial Microorganisms," Aerosol Sci. Technol. 30, 100-108 (1999).
[CrossRef]

Davis, G. N.

P. A. Jensen, W. F. Todd, G. N. Davis, and P. V. Scarpino, "Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria," Am. Ind. Hyg. Assoc. J. 53, 660-667 (1992).
[CrossRef] [PubMed]

Donnelly, J.

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

Grinshpun, S. A.

K. Willeke, X. Lin, and S. A. Grinshpun, "Improved aerosol collection by combined impaction and centrifugal motion," Aerosol Sci. Technol. 28, 439-456 (1998).
[CrossRef]

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

M. P. Buttner, K. Willeke, and S. A. Grinshpun, "Sampling and Analysis of Airborne Microorganisms," Manual of Environmental Microbiology (ASM Press, 1997), pp. 629-640.

Hairston, P. P.

P. P. Hairston, J. Ho, and F. R. Quant, "Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence," J. Aerosol. Sci. 28, 471-482 (1997).
[CrossRef] [PubMed]

Hall, E. A. H.

A. A. Hindle and E. A. H. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst 124, 1599-1604 (1999).
[CrossRef]

Hao, M. L.

C. S. Li, M. L. Hao, C. W. Chang, and C. S. Wang, "Evaluation of Microbial Samplers for Bacterial Microorganisms," Aerosol Sci. Technol. 30, 100-108 (1999).
[CrossRef]

Hartung, J.

O. Pahl, V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes, "Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange," J. Aerosol Sci. 28, 427-435 (1997).
[CrossRef]

Hindle, A. A.

A. A. Hindle and E. A. H. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst 124, 1599-1604 (1999).
[CrossRef]

Ho, J.

P. P. Hairston, J. Ho, and F. R. Quant, "Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence," J. Aerosol. Sci. 28, 471-482 (1997).
[CrossRef] [PubMed]

Jensen, P. A.

P. A. Jensen, W. F. Todd, G. N. Davis, and P. V. Scarpino, "Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria," Am. Ind. Hyg. Assoc. J. 53, 660-667 (1992).
[CrossRef] [PubMed]

Jones, G.

G. Jones and V. I. Vulev, "Medium effects on the photophysical properties of terbium (III) complexes with pyridine-2, 6 dicarboxylate," Photochem. Photobiol. Sci. 1, 925-933 (2002).
[CrossRef]

Juozaitis, A.

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

Lacey, J.

O. Pahl, V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes, "Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange," J. Aerosol Sci. 28, 427-435 (1997).
[CrossRef]

Lester, E. D.

E. D. Lester, G. Bearman, and A. Ponce, "A second-generation anthrax smoke detector: an inexpensive front-end monitor that detects airborne bacterial spores," IEEE Eng. Med. Biol. Mag. 23, 130-135 (2004).
[CrossRef] [PubMed]

E. D. Lester and A. Ponce, "An anthrax smoke detector: Online detection of aerosolized bacterial spores," IEEE Eng. Med. Biol. Mag. 21, 38-42 (2002).
[CrossRef] [PubMed]

Li, C. S.

C. S. Li, M. L. Hao, C. W. Chang, and C. S. Wang, "Evaluation of Microbial Samplers for Bacterial Microorganisms," Aerosol Sci. Technol. 30, 100-108 (1999).
[CrossRef]

Lin, X.

K. Willeke, X. Lin, and S. A. Grinshpun, "Improved aerosol collection by combined impaction and centrifugal motion," Aerosol Sci. Technol. 28, 439-456 (1998).
[CrossRef]

Niles, S.

Pahl, O.

O. Pahl, V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes, "Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange," J. Aerosol Sci. 28, 427-435 (1997).
[CrossRef]

Phillips, V. R.

O. Pahl, V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes, "Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange," J. Aerosol Sci. 28, 427-435 (1997).
[CrossRef]

Ponce, A.

E. D. Lester, G. Bearman, and A. Ponce, "A second-generation anthrax smoke detector: an inexpensive front-end monitor that detects airborne bacterial spores," IEEE Eng. Med. Biol. Mag. 23, 130-135 (2004).
[CrossRef] [PubMed]

E. D. Lester and A. Ponce, "An anthrax smoke detector: Online detection of aerosolized bacterial spores," IEEE Eng. Med. Biol. Mag. 21, 38-42 (2002).
[CrossRef] [PubMed]

Quant, F. R.

P. P. Hairston, J. Ho, and F. R. Quant, "Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence," J. Aerosol. Sci. 28, 471-482 (1997).
[CrossRef] [PubMed]

Rosen, D. L.

D. L. Rosen and S. Niles, "Chelation number of terbium dipicolinate: Effects on photoluminescence lifetime and absorption," Appl. Spectrosc. 55, 208-216 (2001).
[CrossRef]

D. L. Rosen, "Bacterial endospore detection using photoluminescence from terbium dipicolinate," Rev. Anal. Chem. 18, 1-21 (1999).
[CrossRef]

Scarpino, P. V.

P. A. Jensen, W. F. Todd, G. N. Davis, and P. V. Scarpino, "Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria," Am. Ind. Hyg. Assoc. J. 53, 660-667 (1992).
[CrossRef] [PubMed]

Stelma, G. N.

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

Terzieva, S.

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

Todd, W. F.

P. A. Jensen, W. F. Todd, G. N. Davis, and P. V. Scarpino, "Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria," Am. Ind. Hyg. Assoc. J. 53, 660-667 (1992).
[CrossRef] [PubMed]

Ulevicius, V.

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

Vulev, V. I.

G. Jones and V. I. Vulev, "Medium effects on the photophysical properties of terbium (III) complexes with pyridine-2, 6 dicarboxylate," Photochem. Photobiol. Sci. 1, 925-933 (2002).
[CrossRef]

Wang, C. S.

C. S. Li, M. L. Hao, C. W. Chang, and C. S. Wang, "Evaluation of Microbial Samplers for Bacterial Microorganisms," Aerosol Sci. Technol. 30, 100-108 (1999).
[CrossRef]

Wathes, C. M.

O. Pahl, V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes, "Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange," J. Aerosol Sci. 28, 427-435 (1997).
[CrossRef]

Willeke, K.

K. Willeke, X. Lin, and S. A. Grinshpun, "Improved aerosol collection by combined impaction and centrifugal motion," Aerosol Sci. Technol. 28, 439-456 (1998).
[CrossRef]

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

M. P. Buttner, K. Willeke, and S. A. Grinshpun, "Sampling and Analysis of Airborne Microorganisms," Manual of Environmental Microbiology (ASM Press, 1997), pp. 629-640.

Aerosol Sci. Technol. (3)

S. A. Grinshpun, K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner, "Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers," Aerosol Sci. Technol. 26, 326-342 (1997).
[CrossRef]

C. S. Li, M. L. Hao, C. W. Chang, and C. S. Wang, "Evaluation of Microbial Samplers for Bacterial Microorganisms," Aerosol Sci. Technol. 30, 100-108 (1999).
[CrossRef]

K. Willeke, X. Lin, and S. A. Grinshpun, "Improved aerosol collection by combined impaction and centrifugal motion," Aerosol Sci. Technol. 28, 439-456 (1998).
[CrossRef]

Am. Ind. Hyg. Assoc. J. (1)

P. A. Jensen, W. F. Todd, G. N. Davis, and P. V. Scarpino, "Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria," Am. Ind. Hyg. Assoc. J. 53, 660-667 (1992).
[CrossRef] [PubMed]

Analyst (1)

A. A. Hindle and E. A. H. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst 124, 1599-1604 (1999).
[CrossRef]

Appl. Spectrosc. (1)

IEEE Eng. Med. Biol. Mag. (2)

E. D. Lester and A. Ponce, "An anthrax smoke detector: Online detection of aerosolized bacterial spores," IEEE Eng. Med. Biol. Mag. 21, 38-42 (2002).
[CrossRef] [PubMed]

E. D. Lester, G. Bearman, and A. Ponce, "A second-generation anthrax smoke detector: an inexpensive front-end monitor that detects airborne bacterial spores," IEEE Eng. Med. Biol. Mag. 23, 130-135 (2004).
[CrossRef] [PubMed]

J. Aerosol Sci. (1)

O. Pahl, V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes, "Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange," J. Aerosol Sci. 28, 427-435 (1997).
[CrossRef]

J. Aerosol. Sci. (1)

P. P. Hairston, J. Ho, and F. R. Quant, "Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence," J. Aerosol. Sci. 28, 471-482 (1997).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci. (1)

G. Jones and V. I. Vulev, "Medium effects on the photophysical properties of terbium (III) complexes with pyridine-2, 6 dicarboxylate," Photochem. Photobiol. Sci. 1, 925-933 (2002).
[CrossRef]

Rev. Anal. Chem. (1)

D. L. Rosen, "Bacterial endospore detection using photoluminescence from terbium dipicolinate," Rev. Anal. Chem. 18, 1-21 (1999).
[CrossRef]

Other (1)

M. P. Buttner, K. Willeke, and S. A. Grinshpun, "Sampling and Analysis of Airborne Microorganisms," Manual of Environmental Microbiology (ASM Press, 1997), pp. 629-640.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Overhead diagram of the bacterial endospore sensor: A, adjustable aperture; L 1 , and L 2 , 50 mm diameter, focal length 75 mm ; L 3 , cylindrical lens with focal length 150 mm ; L 4 , 25.4 mm diameter, focal length 125 mm ; F 1 and F 2 , UV broadband filter; F 3 , narrow band filter at 540 nm ; F 4 , long pass filter with cutoff at 450 nm ; SW, silica window; PD, photodiode; IS, integrating sphere; B, baffle; PMT, photomultiplier.

Fig. 2
Fig. 2

Side view of the system containing the collection vessel and integrating sphere.

Fig. 3
Fig. 3

Experiment to test the prototype system on the aerosol chamber.

Fig. 4
Fig. 4

Emission intensity integrated from 1.20 to + 3.60 ms as function of the time of sampling aerosol chamber.

Fig. 5
Fig. 5

Emission intensity integrated from + 1.14 to + 3.60 ms as function of the time of the sampling aerosol chamber.

Fig. 6
Fig. 6

Emission lifetime as measured between + 1.14 and + 3.60 ms as a function of the time of sampling from an aerosol chamber.

Fig. 7
Fig. 7

Absorption coefficient of the suspension of BG aerosols in TbCl 3 , collected from the aerosol chamber, with the absorption coefficient of the pristine TbCl 3 solution subtracted, as a function of wavelength.

Fig. 8
Fig. 8

Emission spectra at 280 nm excitation of the TbCl 3 solution both with and without BG aerosols collected from the aerosol chamber.

Fig. 9
Fig. 9

Integrated intensity of a 5.0 µM Tb ( dpa ) + solution as a function of the time of sampling room air, showing the effect of evaporating water.

Metrics