Abstract

Spectral measurements of remote-sensing reflectance (Rrs) and absorption coefficients carried out in three European estuaries (Gironde and Loire in France, Tamar in the UK) are presented and analyzed. Typical Rrs and absorption spectra are compared with typical values measured in coastal waters. The respective contributions of the water constituents, i.e., suspended sediments, colored dissolved organic matter, and phytoplankton (characterized by chlorophyll-a), are determined. The Rrs spectra are then reproduced with an optical model from the measured absorption coefficients and fitted backscattering coefficients. From Rrs ratios, empirical quantification relationships are established, reproduced, and explained from theoretical calculations. These quantification relationships were established from numerous field measurements and a reflectance model integrating the mean values of the water constituents' inherent optical properties. The model's sensitivity to the biogeochemical constituents and to their nature and composition is assessed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Siegel, M. Gerth, and A. Mutzke, "Dynamics of the Oder River plume in the Southern Baltic Sea: satellite data and numerical modelling," Cont. Shelf Res. 19, 1143-1159 (1999).
    [CrossRef]
  2. R. J. Vos, P. J. G. Brummelhuis, and H. Gerritsen, "Integrated data-modelling approach for suspended sediment transport in a regional scale," Coast. Eng. 41, 177-200 (2000).
    [CrossRef]
  3. International Ocean Colour Coordinating Group, "Remote sensing of ocean colour in coastal, and other optically-complex, waters," Rep. of the IOCCG (International Ocean-Colour Coordinating Group, 2000).
  4. D. Doxaran, J. M. Froidefond, S. J. Lavender, and P. Castaing, "Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations," Remote Sens. Environ. 81, 149-161 (2002).
    [CrossRef]
  5. D. Doxaran, J. M. Froidefond, and P. Castaing, "A reflectance band ratio used to estimate suspended matter concentrations in coastal sediment-dominated waters," Int. J. Remote Sens. 23, 5079-5085 (2002).
    [CrossRef]
  6. D. Doxaran, J. M. Froidefond, and P. Castaing, "Remote sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects using reflectance ratios," Appl. Opt. 42, 2623-2634 (2003).
    [CrossRef] [PubMed]
  7. D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters," Int. J. Remote Sens. 26, 1763-1769 (2005).
    [CrossRef]
  8. D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Surface reflection effects on upwelling radiance field measurements in turbid waters," J. Opt. A Pure Appl. Opt. 6, 690-697 (2004).
    [CrossRef]
  9. C. D. Mobley, "Estimation of the remote-sensing reflectance from above-surface measurements," Appl. Opt. 38, 7442-7455 (1999).
    [CrossRef]
  10. D. Doxaran, R. C. N. Cherukuru, S. J. Lavender, and G. F. Moore, "Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations," Appl. Opt. 43, 5981-5986 (2004).
    [CrossRef] [PubMed]
  11. T. Ohde and H. Siegel, "Use of a derivation of immersion factors for the hyperspectral TriOS radiance sensor," J. Opt. A Pure Appl. Opt. 5, 12-14 (2003).
    [CrossRef]
  12. G. S. Fargion and J. L. Mueller, "Ocean optics protocols for satellite ocean colour sensor validation. Revision 2," NASA Tech. Memo. 209966, SeaWiFS Tech. Rep. Ser. (NASA Goddard Space Flight Center, 2000).
  13. A. Morel, "In-water and remote sensing measurements of ocean color," Bound. Layer Meteorol. 18, 177-201 (1980).
    [CrossRef]
  14. H. R. Gordon and K. Ding, "Self-shading of in-water optical measurements," Limnol. Oceanogr. 37, 491-500 (1992).
    [CrossRef]
  15. E. J. Arar and G. B. Collins, "In vitro determination of chlorophyll a and pheophytin-a in marine and freshwater algae by fluorescence," in Method 445.0-Revision 2 (U.S. Environmental Protection Agency, 1997).
  16. S. B. Hooker, G. Zibordi, G. Lazin and S. McLean, "The SeaBOARR-98 field campaign," NASA Tech. Memo. 1999-206892, S.B.Hooker and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 1999), Vol. 3.
  17. S. Tassan and G. M. Ferrari, "An alternative approach to absorption measurements on aquatic particles retained on filters," Limnol. Oceanogr. 40, 411-417 (1995).
    [CrossRef]
  18. G. H. Tilstone and V. Martinez-Vicente, "Analysis of 50 samples to determine the phytoplankton absorption spectra," Rep. 1, PMA contract 14 (Plymouth Marine Laboratory, Plymouth, UK, 2004).
  19. R. W. Gould and R. A. Arnone, "Remote sensing estimates of inherent optical properties in a coastal environment," Remote Sens. Environ. 61, 290-301 (1997).
    [CrossRef]
  20. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. II. Bidirectional aspects," Appl. Opt. 32, 6864-6879 (1993).
    [CrossRef] [PubMed]
  21. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  22. G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm to 200 μm wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  23. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).
  24. R. C. Smith and A. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981).
    [CrossRef] [PubMed]
  25. F. Lahet, S. Ouillon, and P. Forget, "A three component model of ocean colour and its application in the Ebro River mouth area," Remote Sens. Environ. 72, 181-190 (2000).
    [CrossRef]
  26. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
    [CrossRef]
  27. A. Morel, "Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique," in Optics of the Sea, Vol. 61 of AGARD Lectures Series (Advisory Group for Aerospace Research and Development, Paris, 1973), pp. 3.1.1-3.1.76.
  28. G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
    [CrossRef]
  29. X. Irigoien and J. Castel, "Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France)," Estuar. Coast. Shelf Sci. 44, 507-517 (1997).
    [CrossRef]
  30. D. G. Bowers, G. E. L. Harker, and B. Stephan, "Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll," Int. J. Remote Sens. 17, 2449-2460 (1996).
    [CrossRef]
  31. A. E. J. Miller, "Seasonal investigations of dissolved organic carbon dynamics in the Tamar estuary, U.K.," Estuar. Coast. Shelf Sci. 49, 891-908 (1999).
    [CrossRef]
  32. T. J. Petzold, "Volume scattering functions for selected ocean waters," in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson, and Ross, 1972) pp. 150-174.
  33. G. J. C. Underwood and J. Kromkamp, "Primary production by phytoplankton and microphytobenthos in estuaries," Adv. Ecol. Res. 29, 93-153 (1999).
    [CrossRef]
  34. M. Babin and D. Stramski, "Variations in the mass-specific absoprtion coefficient of mineral particles suspended in water," Limnol. Oceanogr. 49, 756-767 (2004).
    [CrossRef]
  35. S. B. Wozniak and D. Stramski, "Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms," Appl. Opt. 43, 3489-3503 (2005).
    [CrossRef]
  36. P. Forget, S. Ouillon, F. Lahet, and P. Broche, "Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters," Remote Sens. Environ. 68, 264-272 (1999).
    [CrossRef]
  37. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  38. Z. P. Lee, K. L. Carder, R. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, "Model for the interpretation of hyperspectral remote-sensing reflectance," Appl. Opt. 33, 5721-5732 (1994).
    [CrossRef] [PubMed]
  39. G. Dall'Olmo, A. A. Gitelson, and D. C. Rundquist, "Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters," Geophys. Res. Lett. 30, 10.1029/2003GL018065 (2003).
    [CrossRef]
  40. G. Dall'Olmo and A. A. Gitelson, "Effect of the variability of bio-optical parameters on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005).
    [CrossRef] [PubMed]
  41. E. J. D'Sa and R. L. Miller, "Bio-optical properties in waters influenced by the Mississippi River during low flow conditions," Remote Sens. Environ. 84, 538-549 (2003).
    [CrossRef]
  42. P. S. Chavez, "An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data," Remote Sens. Environ. 24, 459-479 (1988).
    [CrossRef]
  43. G. F. Moore, J. Aiken, and S. J. Lavender, "The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS," Int. J. Remote Sens. 20, 1713-1733 (1999).
    [CrossRef]
  44. D. Doxaran, P. Castaing, and S. J. Lavender, "Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data," submitted to Int. J. Remote Sens.

2005

2004

D. Doxaran, R. C. N. Cherukuru, S. J. Lavender, and G. F. Moore, "Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations," Appl. Opt. 43, 5981-5986 (2004).
[CrossRef] [PubMed]

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Surface reflection effects on upwelling radiance field measurements in turbid waters," J. Opt. A Pure Appl. Opt. 6, 690-697 (2004).
[CrossRef]

M. Babin and D. Stramski, "Variations in the mass-specific absoprtion coefficient of mineral particles suspended in water," Limnol. Oceanogr. 49, 756-767 (2004).
[CrossRef]

2003

T. Ohde and H. Siegel, "Use of a derivation of immersion factors for the hyperspectral TriOS radiance sensor," J. Opt. A Pure Appl. Opt. 5, 12-14 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, "Remote sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects using reflectance ratios," Appl. Opt. 42, 2623-2634 (2003).
[CrossRef] [PubMed]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

G. Dall'Olmo, A. A. Gitelson, and D. C. Rundquist, "Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters," Geophys. Res. Lett. 30, 10.1029/2003GL018065 (2003).
[CrossRef]

E. J. D'Sa and R. L. Miller, "Bio-optical properties in waters influenced by the Mississippi River during low flow conditions," Remote Sens. Environ. 84, 538-549 (2003).
[CrossRef]

2002

D. Doxaran, J. M. Froidefond, S. J. Lavender, and P. Castaing, "Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations," Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, "A reflectance band ratio used to estimate suspended matter concentrations in coastal sediment-dominated waters," Int. J. Remote Sens. 23, 5079-5085 (2002).
[CrossRef]

2000

R. J. Vos, P. J. G. Brummelhuis, and H. Gerritsen, "Integrated data-modelling approach for suspended sediment transport in a regional scale," Coast. Eng. 41, 177-200 (2000).
[CrossRef]

F. Lahet, S. Ouillon, and P. Forget, "A three component model of ocean colour and its application in the Ebro River mouth area," Remote Sens. Environ. 72, 181-190 (2000).
[CrossRef]

1999

A. E. J. Miller, "Seasonal investigations of dissolved organic carbon dynamics in the Tamar estuary, U.K.," Estuar. Coast. Shelf Sci. 49, 891-908 (1999).
[CrossRef]

G. J. C. Underwood and J. Kromkamp, "Primary production by phytoplankton and microphytobenthos in estuaries," Adv. Ecol. Res. 29, 93-153 (1999).
[CrossRef]

H. Siegel, M. Gerth, and A. Mutzke, "Dynamics of the Oder River plume in the Southern Baltic Sea: satellite data and numerical modelling," Cont. Shelf Res. 19, 1143-1159 (1999).
[CrossRef]

G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, and P. Broche, "Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters," Remote Sens. Environ. 68, 264-272 (1999).
[CrossRef]

G. F. Moore, J. Aiken, and S. J. Lavender, "The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS," Int. J. Remote Sens. 20, 1713-1733 (1999).
[CrossRef]

C. D. Mobley, "Estimation of the remote-sensing reflectance from above-surface measurements," Appl. Opt. 38, 7442-7455 (1999).
[CrossRef]

1997

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

R. W. Gould and R. A. Arnone, "Remote sensing estimates of inherent optical properties in a coastal environment," Remote Sens. Environ. 61, 290-301 (1997).
[CrossRef]

X. Irigoien and J. Castel, "Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France)," Estuar. Coast. Shelf Sci. 44, 507-517 (1997).
[CrossRef]

1996

D. G. Bowers, G. E. L. Harker, and B. Stephan, "Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll," Int. J. Remote Sens. 17, 2449-2460 (1996).
[CrossRef]

1995

S. Tassan and G. M. Ferrari, "An alternative approach to absorption measurements on aquatic particles retained on filters," Limnol. Oceanogr. 40, 411-417 (1995).
[CrossRef]

1994

1993

1992

H. R. Gordon and K. Ding, "Self-shading of in-water optical measurements," Limnol. Oceanogr. 37, 491-500 (1992).
[CrossRef]

1988

P. S. Chavez, "An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data," Remote Sens. Environ. 24, 459-479 (1988).
[CrossRef]

1981

1980

A. Morel, "In-water and remote sensing measurements of ocean color," Bound. Layer Meteorol. 18, 177-201 (1980).
[CrossRef]

1973

Abril, G.

G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
[CrossRef]

Aiken, J.

G. F. Moore, J. Aiken, and S. J. Lavender, "The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS," Int. J. Remote Sens. 20, 1713-1733 (1999).
[CrossRef]

Arar, E. J.

E. J. Arar and G. B. Collins, "In vitro determination of chlorophyll a and pheophytin-a in marine and freshwater algae by fluorescence," in Method 445.0-Revision 2 (U.S. Environmental Protection Agency, 1997).

Arnone, R. A.

R. W. Gould and R. A. Arnone, "Remote sensing estimates of inherent optical properties in a coastal environment," Remote Sens. Environ. 61, 290-301 (1997).
[CrossRef]

Babin, M.

M. Babin and D. Stramski, "Variations in the mass-specific absoprtion coefficient of mineral particles suspended in water," Limnol. Oceanogr. 49, 756-767 (2004).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

Baker, A.

Bassoullet, P.

G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
[CrossRef]

Boutier, B.

G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
[CrossRef]

Bowers, D. G.

D. G. Bowers, G. E. L. Harker, and B. Stephan, "Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll," Int. J. Remote Sens. 17, 2449-2460 (1996).
[CrossRef]

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

Broche, P.

P. Forget, S. Ouillon, F. Lahet, and P. Broche, "Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters," Remote Sens. Environ. 68, 264-272 (1999).
[CrossRef]

Brummelhuis, P. J. G.

R. J. Vos, P. J. G. Brummelhuis, and H. Gerritsen, "Integrated data-modelling approach for suspended sediment transport in a regional scale," Coast. Eng. 41, 177-200 (2000).
[CrossRef]

Carder, K. L.

Castaing, P.

D. Doxaran, J. M. Froidefond, and P. Castaing, "Remote sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects using reflectance ratios," Appl. Opt. 42, 2623-2634 (2003).
[CrossRef] [PubMed]

D. Doxaran, J. M. Froidefond, S. J. Lavender, and P. Castaing, "Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations," Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, "A reflectance band ratio used to estimate suspended matter concentrations in coastal sediment-dominated waters," Int. J. Remote Sens. 23, 5079-5085 (2002).
[CrossRef]

D. Doxaran, P. Castaing, and S. J. Lavender, "Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data," submitted to Int. J. Remote Sens.

Castel, J.

X. Irigoien and J. Castel, "Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France)," Estuar. Coast. Shelf Sci. 44, 507-517 (1997).
[CrossRef]

Chavez, P. S.

P. S. Chavez, "An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data," Remote Sens. Environ. 24, 459-479 (1988).
[CrossRef]

Cherukuru, R. C. N.

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters," Int. J. Remote Sens. 26, 1763-1769 (2005).
[CrossRef]

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Surface reflection effects on upwelling radiance field measurements in turbid waters," J. Opt. A Pure Appl. Opt. 6, 690-697 (2004).
[CrossRef]

D. Doxaran, R. C. N. Cherukuru, S. J. Lavender, and G. F. Moore, "Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations," Appl. Opt. 43, 5981-5986 (2004).
[CrossRef] [PubMed]

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

Collins, G. B.

E. J. Arar and G. B. Collins, "In vitro determination of chlorophyll a and pheophytin-a in marine and freshwater algae by fluorescence," in Method 445.0-Revision 2 (U.S. Environmental Protection Agency, 1997).

Dall'Olmo, G.

G. Dall'Olmo and A. A. Gitelson, "Effect of the variability of bio-optical parameters on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005).
[CrossRef] [PubMed]

G. Dall'Olmo, A. A. Gitelson, and D. C. Rundquist, "Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters," Geophys. Res. Lett. 30, 10.1029/2003GL018065 (2003).
[CrossRef]

Davis, C. O.

Ding, K.

H. R. Gordon and K. Ding, "Self-shading of in-water optical measurements," Limnol. Oceanogr. 37, 491-500 (1992).
[CrossRef]

Doxaran, D.

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters," Int. J. Remote Sens. 26, 1763-1769 (2005).
[CrossRef]

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Surface reflection effects on upwelling radiance field measurements in turbid waters," J. Opt. A Pure Appl. Opt. 6, 690-697 (2004).
[CrossRef]

D. Doxaran, R. C. N. Cherukuru, S. J. Lavender, and G. F. Moore, "Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations," Appl. Opt. 43, 5981-5986 (2004).
[CrossRef] [PubMed]

D. Doxaran, J. M. Froidefond, and P. Castaing, "Remote sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects using reflectance ratios," Appl. Opt. 42, 2623-2634 (2003).
[CrossRef] [PubMed]

D. Doxaran, J. M. Froidefond, S. J. Lavender, and P. Castaing, "Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations," Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, "A reflectance band ratio used to estimate suspended matter concentrations in coastal sediment-dominated waters," Int. J. Remote Sens. 23, 5079-5085 (2002).
[CrossRef]

D. Doxaran, P. Castaing, and S. J. Lavender, "Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data," submitted to Int. J. Remote Sens.

D'Sa, E. J.

E. J. D'Sa and R. L. Miller, "Bio-optical properties in waters influenced by the Mississippi River during low flow conditions," Remote Sens. Environ. 84, 538-549 (2003).
[CrossRef]

Etcheber, H.

G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
[CrossRef]

Fargion, G. S.

G. S. Fargion and J. L. Mueller, "Ocean optics protocols for satellite ocean colour sensor validation. Revision 2," NASA Tech. Memo. 209966, SeaWiFS Tech. Rep. Ser. (NASA Goddard Space Flight Center, 2000).

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

S. Tassan and G. M. Ferrari, "An alternative approach to absorption measurements on aquatic particles retained on filters," Limnol. Oceanogr. 40, 411-417 (1995).
[CrossRef]

Forget, P.

F. Lahet, S. Ouillon, and P. Forget, "A three component model of ocean colour and its application in the Ebro River mouth area," Remote Sens. Environ. 72, 181-190 (2000).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, and P. Broche, "Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters," Remote Sens. Environ. 68, 264-272 (1999).
[CrossRef]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

Frankignoulle, M.

G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
[CrossRef]

Froidefond, J. M.

D. Doxaran, J. M. Froidefond, and P. Castaing, "Remote sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects using reflectance ratios," Appl. Opt. 42, 2623-2634 (2003).
[CrossRef] [PubMed]

D. Doxaran, J. M. Froidefond, S. J. Lavender, and P. Castaing, "Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations," Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, "A reflectance band ratio used to estimate suspended matter concentrations in coastal sediment-dominated waters," Int. J. Remote Sens. 23, 5079-5085 (2002).
[CrossRef]

Fry, E. S.

Gentili, B.

Gerritsen, H.

R. J. Vos, P. J. G. Brummelhuis, and H. Gerritsen, "Integrated data-modelling approach for suspended sediment transport in a regional scale," Coast. Eng. 41, 177-200 (2000).
[CrossRef]

Gerth, M.

H. Siegel, M. Gerth, and A. Mutzke, "Dynamics of the Oder River plume in the Southern Baltic Sea: satellite data and numerical modelling," Cont. Shelf Res. 19, 1143-1159 (1999).
[CrossRef]

Gitelson, A. A.

G. Dall'Olmo and A. A. Gitelson, "Effect of the variability of bio-optical parameters on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005).
[CrossRef] [PubMed]

G. Dall'Olmo, A. A. Gitelson, and D. C. Rundquist, "Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters," Geophys. Res. Lett. 30, 10.1029/2003GL018065 (2003).
[CrossRef]

Gordon, H. R.

H. R. Gordon and K. Ding, "Self-shading of in-water optical measurements," Limnol. Oceanogr. 37, 491-500 (1992).
[CrossRef]

Gould, R. W.

R. W. Gould and R. A. Arnone, "Remote sensing estimates of inherent optical properties in a coastal environment," Remote Sens. Environ. 61, 290-301 (1997).
[CrossRef]

Hale, G. M.

Harker, G. E. L.

D. G. Bowers, G. E. L. Harker, and B. Stephan, "Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll," Int. J. Remote Sens. 17, 2449-2460 (1996).
[CrossRef]

Hawes, R. K.

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

Hooker, S. B.

S. B. Hooker, G. Zibordi, G. Lazin and S. McLean, "The SeaBOARR-98 field campaign," NASA Tech. Memo. 1999-206892, S.B.Hooker and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 1999), Vol. 3.

Irigoien, X.

X. Irigoien and J. Castel, "Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France)," Estuar. Coast. Shelf Sci. 44, 507-517 (1997).
[CrossRef]

Kromkamp, J.

G. J. C. Underwood and J. Kromkamp, "Primary production by phytoplankton and microphytobenthos in estuaries," Adv. Ecol. Res. 29, 93-153 (1999).
[CrossRef]

Lahet, F.

F. Lahet, S. Ouillon, and P. Forget, "A three component model of ocean colour and its application in the Ebro River mouth area," Remote Sens. Environ. 72, 181-190 (2000).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, and P. Broche, "Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters," Remote Sens. Environ. 68, 264-272 (1999).
[CrossRef]

Lavender, S. J.

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters," Int. J. Remote Sens. 26, 1763-1769 (2005).
[CrossRef]

D. Doxaran, R. C. N. Cherukuru, S. J. Lavender, and G. F. Moore, "Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations," Appl. Opt. 43, 5981-5986 (2004).
[CrossRef] [PubMed]

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Surface reflection effects on upwelling radiance field measurements in turbid waters," J. Opt. A Pure Appl. Opt. 6, 690-697 (2004).
[CrossRef]

D. Doxaran, J. M. Froidefond, S. J. Lavender, and P. Castaing, "Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations," Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

G. F. Moore, J. Aiken, and S. J. Lavender, "The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS," Int. J. Remote Sens. 20, 1713-1733 (1999).
[CrossRef]

D. Doxaran, P. Castaing, and S. J. Lavender, "Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data," submitted to Int. J. Remote Sens.

Lazin, G.

S. B. Hooker, G. Zibordi, G. Lazin and S. McLean, "The SeaBOARR-98 field campaign," NASA Tech. Memo. 1999-206892, S.B.Hooker and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 1999), Vol. 3.

Le Hir, P.

G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
[CrossRef]

Lee, Z. P.

Martinez-Vicente, V.

G. H. Tilstone and V. Martinez-Vicente, "Analysis of 50 samples to determine the phytoplankton absorption spectra," Rep. 1, PMA contract 14 (Plymouth Marine Laboratory, Plymouth, UK, 2004).

McLean, S.

S. B. Hooker, G. Zibordi, G. Lazin and S. McLean, "The SeaBOARR-98 field campaign," NASA Tech. Memo. 1999-206892, S.B.Hooker and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 1999), Vol. 3.

Miller, A. E. J.

A. E. J. Miller, "Seasonal investigations of dissolved organic carbon dynamics in the Tamar estuary, U.K.," Estuar. Coast. Shelf Sci. 49, 891-908 (1999).
[CrossRef]

Miller, R. L.

E. J. D'Sa and R. L. Miller, "Bio-optical properties in waters influenced by the Mississippi River during low flow conditions," Remote Sens. Environ. 84, 538-549 (2003).
[CrossRef]

Mobley, C. D.

Moore, G. F.

D. Doxaran, R. C. N. Cherukuru, S. J. Lavender, and G. F. Moore, "Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations," Appl. Opt. 43, 5981-5986 (2004).
[CrossRef] [PubMed]

G. F. Moore, J. Aiken, and S. J. Lavender, "The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS," Int. J. Remote Sens. 20, 1713-1733 (1999).
[CrossRef]

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. II. Bidirectional aspects," Appl. Opt. 32, 6864-6879 (1993).
[CrossRef] [PubMed]

A. Morel, "In-water and remote sensing measurements of ocean color," Bound. Layer Meteorol. 18, 177-201 (1980).
[CrossRef]

A. Morel, "Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique," in Optics of the Sea, Vol. 61 of AGARD Lectures Series (Advisory Group for Aerospace Research and Development, Paris, 1973), pp. 3.1.1-3.1.76.

Mueller, J. L.

G. S. Fargion and J. L. Mueller, "Ocean optics protocols for satellite ocean colour sensor validation. Revision 2," NASA Tech. Memo. 209966, SeaWiFS Tech. Rep. Ser. (NASA Goddard Space Flight Center, 2000).

Mutzke, A.

H. Siegel, M. Gerth, and A. Mutzke, "Dynamics of the Oder River plume in the Southern Baltic Sea: satellite data and numerical modelling," Cont. Shelf Res. 19, 1143-1159 (1999).
[CrossRef]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

Ohde, T.

T. Ohde and H. Siegel, "Use of a derivation of immersion factors for the hyperspectral TriOS radiance sensor," J. Opt. A Pure Appl. Opt. 5, 12-14 (2003).
[CrossRef]

Ouillon, S.

F. Lahet, S. Ouillon, and P. Forget, "A three component model of ocean colour and its application in the Ebro River mouth area," Remote Sens. Environ. 72, 181-190 (2000).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, and P. Broche, "Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters," Remote Sens. Environ. 68, 264-272 (1999).
[CrossRef]

Peacock, T. G.

Petzold, T. J.

T. J. Petzold, "Volume scattering functions for selected ocean waters," in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson, and Ross, 1972) pp. 150-174.

Pope, R. M.

Querry, M. R.

Rundquist, D. C.

G. Dall'Olmo, A. A. Gitelson, and D. C. Rundquist, "Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters," Geophys. Res. Lett. 30, 10.1029/2003GL018065 (2003).
[CrossRef]

Siegel, H.

T. Ohde and H. Siegel, "Use of a derivation of immersion factors for the hyperspectral TriOS radiance sensor," J. Opt. A Pure Appl. Opt. 5, 12-14 (2003).
[CrossRef]

H. Siegel, M. Gerth, and A. Mutzke, "Dynamics of the Oder River plume in the Southern Baltic Sea: satellite data and numerical modelling," Cont. Shelf Res. 19, 1143-1159 (1999).
[CrossRef]

Smith, R. C.

Stephan, B.

D. G. Bowers, G. E. L. Harker, and B. Stephan, "Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll," Int. J. Remote Sens. 17, 2449-2460 (1996).
[CrossRef]

Steward, R. G.

Stramski, D.

S. B. Wozniak and D. Stramski, "Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms," Appl. Opt. 43, 3489-3503 (2005).
[CrossRef]

M. Babin and D. Stramski, "Variations in the mass-specific absoprtion coefficient of mineral particles suspended in water," Limnol. Oceanogr. 49, 756-767 (2004).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

Tassan, S.

S. Tassan and G. M. Ferrari, "An alternative approach to absorption measurements on aquatic particles retained on filters," Limnol. Oceanogr. 40, 411-417 (1995).
[CrossRef]

Tilstone, G. H.

G. H. Tilstone and V. Martinez-Vicente, "Analysis of 50 samples to determine the phytoplankton absorption spectra," Rep. 1, PMA contract 14 (Plymouth Marine Laboratory, Plymouth, UK, 2004).

Underwood, G. J. C.

G. J. C. Underwood and J. Kromkamp, "Primary production by phytoplankton and microphytobenthos in estuaries," Adv. Ecol. Res. 29, 93-153 (1999).
[CrossRef]

Vos, R. J.

R. J. Vos, P. J. G. Brummelhuis, and H. Gerritsen, "Integrated data-modelling approach for suspended sediment transport in a regional scale," Coast. Eng. 41, 177-200 (2000).
[CrossRef]

Wozniak, S. B.

Zibordi, G.

S. B. Hooker, G. Zibordi, G. Lazin and S. McLean, "The SeaBOARR-98 field campaign," NASA Tech. Memo. 1999-206892, S.B.Hooker and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 1999), Vol. 3.

Adv. Ecol. Res.

G. J. C. Underwood and J. Kromkamp, "Primary production by phytoplankton and microphytobenthos in estuaries," Adv. Ecol. Res. 29, 93-153 (1999).
[CrossRef]

Appl. Opt.

G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm to 200 μm wavelength region," Appl. Opt. 12, 555-563 (1973).
[CrossRef] [PubMed]

R. C. Smith and A. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, R. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, "Model for the interpretation of hyperspectral remote-sensing reflectance," Appl. Opt. 33, 5721-5732 (1994).
[CrossRef] [PubMed]

C. D. Mobley, "Estimation of the remote-sensing reflectance from above-surface measurements," Appl. Opt. 38, 7442-7455 (1999).
[CrossRef]

A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. II. Bidirectional aspects," Appl. Opt. 32, 6864-6879 (1993).
[CrossRef] [PubMed]

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, "Remote sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects using reflectance ratios," Appl. Opt. 42, 2623-2634 (2003).
[CrossRef] [PubMed]

S. B. Wozniak and D. Stramski, "Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms," Appl. Opt. 43, 3489-3503 (2005).
[CrossRef]

D. Doxaran, R. C. N. Cherukuru, S. J. Lavender, and G. F. Moore, "Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations," Appl. Opt. 43, 5981-5986 (2004).
[CrossRef] [PubMed]

G. Dall'Olmo and A. A. Gitelson, "Effect of the variability of bio-optical parameters on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005).
[CrossRef] [PubMed]

Bound. Layer Meteorol.

A. Morel, "In-water and remote sensing measurements of ocean color," Bound. Layer Meteorol. 18, 177-201 (1980).
[CrossRef]

Coast. Eng.

R. J. Vos, P. J. G. Brummelhuis, and H. Gerritsen, "Integrated data-modelling approach for suspended sediment transport in a regional scale," Coast. Eng. 41, 177-200 (2000).
[CrossRef]

Cont. Shelf Res.

H. Siegel, M. Gerth, and A. Mutzke, "Dynamics of the Oder River plume in the Southern Baltic Sea: satellite data and numerical modelling," Cont. Shelf Res. 19, 1143-1159 (1999).
[CrossRef]

Estuar. Coast. Shelf Sci.

A. E. J. Miller, "Seasonal investigations of dissolved organic carbon dynamics in the Tamar estuary, U.K.," Estuar. Coast. Shelf Sci. 49, 891-908 (1999).
[CrossRef]

X. Irigoien and J. Castel, "Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France)," Estuar. Coast. Shelf Sci. 44, 507-517 (1997).
[CrossRef]

Geophys. Res. Lett.

G. Dall'Olmo, A. A. Gitelson, and D. C. Rundquist, "Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters," Geophys. Res. Lett. 30, 10.1029/2003GL018065 (2003).
[CrossRef]

Int. J. Remote Sens.

G. F. Moore, J. Aiken, and S. J. Lavender, "The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS," Int. J. Remote Sens. 20, 1713-1733 (1999).
[CrossRef]

D. G. Bowers, G. E. L. Harker, and B. Stephan, "Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll," Int. J. Remote Sens. 17, 2449-2460 (1996).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, "A reflectance band ratio used to estimate suspended matter concentrations in coastal sediment-dominated waters," Int. J. Remote Sens. 23, 5079-5085 (2002).
[CrossRef]

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters," Int. J. Remote Sens. 26, 1763-1769 (2005).
[CrossRef]

J. Geophys. Res.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 10, doi:1029/2001JC000882 (2003).

J. Opt. A Pure Appl. Opt.

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Surface reflection effects on upwelling radiance field measurements in turbid waters," J. Opt. A Pure Appl. Opt. 6, 690-697 (2004).
[CrossRef]

T. Ohde and H. Siegel, "Use of a derivation of immersion factors for the hyperspectral TriOS radiance sensor," J. Opt. A Pure Appl. Opt. 5, 12-14 (2003).
[CrossRef]

Limnol. Oceanogr.

H. R. Gordon and K. Ding, "Self-shading of in-water optical measurements," Limnol. Oceanogr. 37, 491-500 (1992).
[CrossRef]

S. Tassan and G. M. Ferrari, "An alternative approach to absorption measurements on aquatic particles retained on filters," Limnol. Oceanogr. 40, 411-417 (1995).
[CrossRef]

G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle, "Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France)," Limnol. Oceanogr. 44, 1304-1315 (1999).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

M. Babin and D. Stramski, "Variations in the mass-specific absoprtion coefficient of mineral particles suspended in water," Limnol. Oceanogr. 49, 756-767 (2004).
[CrossRef]

Remote Sens. Environ.

P. Forget, S. Ouillon, F. Lahet, and P. Broche, "Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters," Remote Sens. Environ. 68, 264-272 (1999).
[CrossRef]

E. J. D'Sa and R. L. Miller, "Bio-optical properties in waters influenced by the Mississippi River during low flow conditions," Remote Sens. Environ. 84, 538-549 (2003).
[CrossRef]

P. S. Chavez, "An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data," Remote Sens. Environ. 24, 459-479 (1988).
[CrossRef]

R. W. Gould and R. A. Arnone, "Remote sensing estimates of inherent optical properties in a coastal environment," Remote Sens. Environ. 61, 290-301 (1997).
[CrossRef]

F. Lahet, S. Ouillon, and P. Forget, "A three component model of ocean colour and its application in the Ebro River mouth area," Remote Sens. Environ. 72, 181-190 (2000).
[CrossRef]

D. Doxaran, J. M. Froidefond, S. J. Lavender, and P. Castaing, "Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations," Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

Other

International Ocean Colour Coordinating Group, "Remote sensing of ocean colour in coastal, and other optically-complex, waters," Rep. of the IOCCG (International Ocean-Colour Coordinating Group, 2000).

G. S. Fargion and J. L. Mueller, "Ocean optics protocols for satellite ocean colour sensor validation. Revision 2," NASA Tech. Memo. 209966, SeaWiFS Tech. Rep. Ser. (NASA Goddard Space Flight Center, 2000).

G. H. Tilstone and V. Martinez-Vicente, "Analysis of 50 samples to determine the phytoplankton absorption spectra," Rep. 1, PMA contract 14 (Plymouth Marine Laboratory, Plymouth, UK, 2004).

E. J. Arar and G. B. Collins, "In vitro determination of chlorophyll a and pheophytin-a in marine and freshwater algae by fluorescence," in Method 445.0-Revision 2 (U.S. Environmental Protection Agency, 1997).

S. B. Hooker, G. Zibordi, G. Lazin and S. McLean, "The SeaBOARR-98 field campaign," NASA Tech. Memo. 1999-206892, S.B.Hooker and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 1999), Vol. 3.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

D. Doxaran, P. Castaing, and S. J. Lavender, "Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data," submitted to Int. J. Remote Sens.

T. J. Petzold, "Volume scattering functions for selected ocean waters," in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson, and Ross, 1972) pp. 150-174.

A. Morel, "Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique," in Optics of the Sea, Vol. 61 of AGARD Lectures Series (Advisory Group for Aerospace Research and Development, Paris, 1973), pp. 3.1.1-3.1.76.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Maps of the three study areas: (a) Gironde, (b) Tamar, and (c) Loire estuaries.

Fig. 2
Fig. 2

(a)–(c) Examples of spectral KLu coefficients determined from in-water Lu measurements carried out in the Tamar estuary on dates and at local times shown. The TSM concentrations are (a) 6.9, (b) 13.1, and (c) 56.6 mg 1−1 and the sky conditions are blue, blue, and covered homogeneous, respectively. (d)–(f), Resultant ε errors calculated from Eq. (4). (g)–(i) The respective Lw ′ and Lw signals (i.e., before and after correction for self-shading effects) are compared to the above-water Lt and (Lt − ρL s ) signals (i.e., before and after correction for surface reflection effects).

Fig. 3
Fig. 3

Typical absorption coefficients: (a) ay , (b) ac *, and (c) as * spectra measured in the Tamar estuary. (d) Typical as * spectra measured in the Gironde estuary.

Fig. 4
Fig. 4

Relative contributions of CDOM, NAP, and Chla to the (total − pure water) absorption signal in the Tamar estuary during winter and summer.

Fig. 5
Fig. 5

Typical Rrs spectra measured (darker curves) and reproduced with the optical model (lighter curves) (a) in the Gironde estuary for TSM concentrations of 9, 35, 82, 210, 365, and 837 mg l−1 from bottom to top, (b) in the Tamar estuary during the 2003 winter period for TSM concentrations of 19, 44, 69, and 797 mg l−1 with ay (440) values in the range 0.4–1.8 m−1 and Chla concentrations lower than 5 μg l−1, and (c) in the Tamar estuary during the 2004 summer period for TSM concentrations of 7, 20, 43, and 59 mg l−1 with ay (440) values in the range 0.5–0.9 m−1 and Chla concentrations in the range 15–32 μg l−1. Model inputs are the water constituents' concentrations; measured ay, ac , and as absorption coefficients; and bbs *(550) and γ values fitted in the ranges 0.007–0.011 m−1 and 0–1, respectively.

Fig. 6
Fig. 6

TSM quantification relationships established in the Gironde estuary for the Rrs(850)∕Rrs(550) and Rrs(850)∕Rrs(650) ratios. Each point represents a field measurement; a solid curve represents the model results of using mean IOP values (see the text for model parameter details). Dotted curves represent relationships established with the model for (a), (b) ±50% variations of the mean b bs * ( 550 ) value and (c), (d), ±50% variations of the mean as *(440) value.

Fig. 7
Fig. 7

TSM quantification relationships established in the Loire estuary for the Rrs(865)∕Rrs(555) and Rrs(865)∕Rrs(670) ratios. Each point represents a field measurement; a solid curve represents the model results of using mean IOP values (see the text for model parameter details). Dotted curves represent the relationships established with the model for (a), (b) variations of γ from 0 to 1 and (c), (d) ±50% variations of the mean ks value.

Fig. 8
Fig. 8

TSM quantification relationships established in the Tamar estuary for the Rrs(850)∕Rrs(550) and Rrs(850)∕Rrs(650) ratios. Each point represents a field measurement; a solid curve represents the model results of using mean IOP values (see the text for model parameter details). Dotted curves represent the relationships established with the model for (a), (b) variations of ay (440) from 0 to 2 m−1 and (c), (d) variations of ky from 0.010 to 0.020 nm−1 with a fixed CDOM concentration [ay (440) = 1 m−1].

Fig. 9
Fig. 9

(a) CDOM concentration [ay (440)] as a function of the TSM concentration from in situ measurements in the Tamar estuary. (b) Empirical CDOM quantification relationships established in the Tamar estuary for the Rrs ratio 400 nm–700 nm. (c) Measured versus model (see the text for model parameter details) Rrs ratio 400 nm–700 nm.

Fig. 10
Fig. 10

Empirical Chla quantification relationships established in the Tamar estuary for (a) the Rrs ratio 850 nm–675 nm and (b) the difference between the Rrs ratios 850 nm–675 nm and 850 nm–700 nm. (c), (d) Measured versus model (see the text for model parameter details) Rrs ratio relationships for the same ratios with respect to (a) and (b).

Tables (3)

Tables Icon

Table 1 Details of In Situ Measurements

Tables Icon

Table 2 Details of the Measured and Modeled IOPs in the Three Estuaries a

Tables Icon

Table 3 Difference {Diff_Rrs = [(Rrsmodel − Rrsmeas)∕Rrsmeas], in percent} between Modeled and Measured Rrs Signals a

Equations (269)

Equations on this page are rendered with MathJax. Learn more.

( b b )
a y
440   nm
[ L w   
( W  m 2
sr 1
 nm 1 ) ]
[ E d ( 0 + ) ( W  m 2 nm 1 ) ]
( 380 950   nm )
350 950   nm
E d ( 0 + )
L w
( L t )
( ρ )
( L s )
( L u )
( F i )
L u ( z , λ ) = F i ( λ ) L u ( z , λ ) ,
L u ( 0 , λ )
[ K L u ( in   inverse   meters ) ]
L u ( z , λ ) = L u ( 0 , λ ) exp [ K L u ( λ ) * z ] .
( L w )
L w ( λ ) 0.544 L u ( 0 , λ ) .
L w
L u     m   and   L u     t
K L u
ε ( λ ) = 1 exp [ k K L u ( λ ) * r ] ,
k = 2 / tan ( θ 0 w )
θ 0 w
r = 0.0235   m
K L u
θ 0 w
L w
L w ( λ ) = L w ( λ ) / [ 1 ε ( λ ) ] .
K L u
( < 500   nm )
( 700 900   nm )
500   to   900   nm
( L t   and   L s )
L u
L w   and   L w
( L t )
[ L t ρ L s ]
( TSM > 3 0 0   mg   l −1 )
L u
0.01   m
L w
( ± 5% )
20 ° C
0.20   μm
[ abs y ( λ ) , 400 < λ < 7 0 0   nm ]
( 5   cm
[ abs MQ ( λ ) ]
a y ( λ ) = 2.303 [ abs y ( λ ) abs MQ ( λ ) ] / l ,
25   mm
350   to   750   nm
60   mm
Rrs = 0.176 Q ( λ ) b b ( λ ) a ( λ ) + b b ( λ ) ,
a   and b b
a ( λ ) = a w ( λ ) + a y ( λ ) + a s ( λ ) + a c ( λ ) ,
b b ( λ ) = b bw ( λ ) + b bs ( λ ) + b bc ( λ ) ,
a w ( λ )
( 380 730   nm )
( 730 950   nm )
a y / s ( λ ) = a y / s ( 440 ) exp [ k y / s ( λ 400 ) ] ,
a y ( 440 )
a s ( 440 )
NAP c × a s * ( 440 )
a s * ( 440 )
k y / s
a c ( λ )
Chla × a c * ( λ )
a c *
b b w ( λ )
b b c ( λ )
Chla × b b c *
b b c *
b bs ( λ ) = NAP c × b bs * ( 550 ) ( λ 550 ) γ ,
b b s * ( 550 )
550   nm
a y ( 440 )
k y
0.1 m 1
0.017 nm 1
0.5 m 1
0.017 nm 1
a y ( λ )
k y
a s * ( 440 )
k s
0.025 0.070 m 2 g 1
0.006 0.015 nm 1
a c * ( λ )
a c * ( λ )
0.5   μg   l 1
b bs ( λ )
b bs *
( 550 )
b s ( λ )
0.42 0.56 m 2 g 1
b bs ( λ )
b s ( λ )
0.007 0.011 m 2 g 1
Rrs meas
Rrs model
Diff _ Rrs = i = 1 n [ ( Rrs model ( λ i ) Rrs meas ( λ i ) ) / Rrs meas ( λ i ) ] ,
λ 1   and   λ n
b bs ( λ )
b bs * ( 550 )
400 500   nm
b bs * ( 550 )
a s * ( 440 )   and   k s
a y ( λ )
k y
0.017 ± 0.005 nm - 1
400 650   nm
a y ( λ )
a c * ( λ )
a s * ( 440 )   and   k s
0.0225 
± 0.015 m 2 g 1
0.0125 
± 0.008 nm 1
0.016 
± 0.003 m 2 g 1
0.0122 
± 0.004 nm 1
a s * ( λ )
700   nm
400 750   nm
a s ( λ )
500   nm
a s * ( 440 )
a s * ( 440 )
0.041 m 2 g 1
0.036 m 2 g 1
a s * ( 440 )
a s * ( 440 )
10 %
90 %
( < 500   nm )
675   nm
a s ( λ )
90 %
350   to   600   nm
60%
600   to   750   nm
550   to 700   nm
( > 600   nm )
0 0.035 sr 1
E d ( 0 + )
675   nm
5   μg   to   50   μg   l 1
b bs * ( 550 )
( Diff _ Rrs = ± 5 %
400   to   900   nm
0 .10   sr 1
E d ( 0 + )
( Diff _ Rrs )   of   ± 6.6 %
400   to   900   nm
( Diff _ Rrs )   of   ± 8.4 %
400   to   900   nm
( < 500   nm )
675   nm
( TSM > 20   μg   l 1 )
443   nm
675   nm
850   nm
550   or   650   nm
Rrs ( 850 ) / Rrs ( 550 )
Rrs ( 850 ) / Rrs ( 650 )
a s * ( 440 )   and   k s
b bs * ( 550 )
γ ( 0.011 m 2 g 1
0.4 nm 1
b bs * ( 550 )
a s * ( 440 )
b bs * ( 550 )
( ± 50 % )
( 0.0055
0.0165 m 2
g 1 )
Rrs ( 850 ) / Rrs ( 550 )
b bs * ( 550 )
Rrs ( 850 ) / Rrs ( 650 )
a s * ( 440 )
± 50 %
a s * ( 440 )
( 0.0105
0.0215 m 2 g −1 )
Rrs ( 850 ) / Rrs ( 550 )
550   nm
Rrs ( 850 ) / Rrs ( 650 )
a s * ( 440 )   and   k s
b bs * ( 550 )
( 0.011 m 2 g 1
0.1 nm 1
γ   and   k s
k s
( 0.006 0.015 nm 1 )
a s * ( 440 )   and   k s
b bs * ( 550 )
γ ( 0.008 m 2 g 1
0.4 nm 1
a y ( 440 )
0 2 m 1 ]
( k y
0.010
0.020 nm −1
[ a y ( 440 )
= 1 m −1
Rrs ( 850 ) / Rrs ( 550 )
550   nm
Rrs ( 850 ) / Rrs ( 650 )
b bs * ( 550 )
700   nm
CDOM   ( k y = 0.017 nm 1 )
a y ( 440 )
Rrs ( 400 ) / Rrs ( 700 )
± 20 %
Rrs ( 400 ) / Rrs ( 700 )
± 30 %
± 50 %
( 650 750   nm )
850   nm
850   nm
675   nm
Rrs ( 850 ) / Rrs ( 650 )
675   nm
700   nm
10 100   mg   l 1
1000   mg   l 1
Rrs ( 850 ) /
Rrs ( 675 )
Rrs ( 850 )
/ Rrs ( 700 ) ]
Diff _ ratio = b b ( 850 ) a ( 850 ) + b b ( 850 ) / b b ( 675 ) a ( 675 ) + b b ( 675 ) b b ( 850 ) a ( 850 ) + b b ( 850 ) / b b ( 700 ) a ( 700 ) + b b ( 700 ) ,
Diff _ ratio = b b ( 850 ) b b ( 675 ) a ( 675 ) + b b ( 675 ) a ( 850 ) + b b ( 850 ) b b ( 850 ) b b ( 700 ) a ( 700 ) + b b ( 700 ) a ( 850 ) + b b ( 850 ) .
b b ( λ )
b bs ( λ )
675   to   850   nm
b b ( λ ) b bs ( λ )
b bs ( 675 ) b bs ( 700 ) b bs ( 850 )
Diff_ratio = a ( 675 ) + b bs ( 675 ) a ( 850 ) + b bs ( 850 ) a ( 700 ) + b bs ( 700 ) a ( 850 ) + b bs ( 850 ) a ( 675 ) a ( 700 ) a ( 850 ) + b bs ( 850 ) .
675   nm
700   nm
Diff_ratio = a w ( 675 ) + a c ( 675 ) a w ( 700 ) a w ( 850 ) + b bs ( 850 ) = a c ( 675 ) a w ( 850 ) + b bs ( 850 ) + a w ( 675 ) a w ( 700 ) a w ( 850 ) + b bs ( 850 ) .
Diff_ratio = a c * ( 675 ) a w ( 850 ) + NAP c × b bs * ( 850 ) C hla + a w ( 675 ) a w ( 700 ) a w ( 850 ) + NAP c × b bs * ( 850 ) .
a c * ( 675 ) a w ( 850 ) + NAP c × b bs * ( 850 )         ( slope ),
a c * ( 675 ) a w ( 700 ) a w ( 850 ) + NAP c × b bs * ( 850 )         ( offset )
a w ( 675 ) , a w ( 700 )
a w ( 850 )
b bs * ( 550 )
( 0.0095 ± 0.0015     g m 1
NAP c
( TSM
( 2 64   mg   l 1 )
11 %
NAP c
2     and     64 mg   l 1
NAP c
675   nm
400 500   nm
675   nm
850   nm
550   or   650   nm
400   to   700   nm
[ Rrs ( 850 ) / Rrs ( 675 ) Rrs ( 850 ) / Rrs ( 700 ) ]
b bs * ( 550 )

Metrics