Abstract

We present a miniaturized photoacoustic (PA) spectrometer obtained by carving a micromachined flexural pressure transducer directly at the top of a glass ferrule. The ferrule is equipped with two optical fibers, one for laser excitation of the gas and one for interferometric readout of the transducer. To demonstrate the working principle and assess the sensitivity of the device, we performed a set of measurements of C2H2 traces in an Ar buffer atmosphere. The data acquired show that our ferrule-top scheme allows one to increase the minimum detectable concentration by more than one order of magnitude with respect to the other miniaturized PA spectrometers reported in the literature, while decreasing the integration time by a factor of 10.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, The Manufacturer and Builder (1881), Vol. 13, pp. 156–158.
    [CrossRef]
  2. T. H. Maugh, Science 188, 38 (1975).
    [CrossRef]
  3. G. C. Wetsel and F. A. McDonald, Appl. Phys. Lett. 30, 252 (1977).
    [CrossRef]
  4. A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).
    [CrossRef]
  5. F. A. McDonald, Appl. Opt. 18, 1363 (1979).
    [CrossRef]
  6. F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 2203–2206.
  7. M. W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003).
    [CrossRef]
  8. J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, Microchem. J. 76, 151 (2004).
    [CrossRef]
  9. J. Breguet, J. P. Pellaux, and N. Gisin, Sens. Actuators A 48, 29 (1995).
    [CrossRef]
  10. Q. Wang, J. Wang, L. Li, and Q. Yu, Sens. Actuators B 153, 214 (2011).
    [CrossRef]
  11. Y. Cao, W. Jin, H. Lut Ho, and J. Ma, Opt. Lett. 38, 434 (2013).
    [CrossRef]
  12. G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, Meas. Sci. Technol. 21, 094033 (2010).
    [CrossRef]
  13. Declaration of interest: one of the authors (DI) is a share holder of Optics11.
  14. S. Schilt and L. Thevenaz, Infrared Phys. Technol. 48, 154 (2006).
    [CrossRef]

2013 (1)

2011 (1)

Q. Wang, J. Wang, L. Li, and Q. Yu, Sens. Actuators B 153, 214 (2011).
[CrossRef]

2010 (1)

G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, Meas. Sci. Technol. 21, 094033 (2010).
[CrossRef]

2006 (1)

S. Schilt and L. Thevenaz, Infrared Phys. Technol. 48, 154 (2006).
[CrossRef]

2004 (1)

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, Microchem. J. 76, 151 (2004).
[CrossRef]

2003 (1)

M. W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003).
[CrossRef]

1995 (1)

J. Breguet, J. P. Pellaux, and N. Gisin, Sens. Actuators A 48, 29 (1995).
[CrossRef]

1979 (1)

1977 (1)

G. C. Wetsel and F. A. McDonald, Appl. Phys. Lett. 30, 252 (1977).
[CrossRef]

1976 (1)

A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

1975 (1)

T. H. Maugh, Science 188, 38 (1975).
[CrossRef]

Bell, A. G.

A. G. Bell, The Manufacturer and Builder (1881), Vol. 13, pp. 156–158.
[CrossRef]

Breguet, J.

J. Breguet, J. P. Pellaux, and N. Gisin, Sens. Actuators A 48, 29 (1995).
[CrossRef]

Cao, Y.

Cotti, G.

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 2203–2206.

de Man, S.

G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, Meas. Sci. Technol. 21, 094033 (2010).
[CrossRef]

Gersho, A.

A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Gisin, N.

J. Breguet, J. P. Pellaux, and N. Gisin, Sens. Actuators A 48, 29 (1995).
[CrossRef]

Gruca, G.

G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, Meas. Sci. Technol. 21, 094033 (2010).
[CrossRef]

Harren, F. J. M.

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 2203–2206.

Iannuzzi, D.

G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, Meas. Sci. Technol. 21, 094033 (2010).
[CrossRef]

Jin, W.

Kauppinen, I.

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, Microchem. J. 76, 151 (2004).
[CrossRef]

Kauppinen, J.

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, Microchem. J. 76, 151 (2004).
[CrossRef]

Koskinen, V.

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, Microchem. J. 76, 151 (2004).
[CrossRef]

Li, L.

Q. Wang, J. Wang, L. Li, and Q. Yu, Sens. Actuators B 153, 214 (2011).
[CrossRef]

Lut Ho, H.

Ma, J.

Maugh, T. H.

T. H. Maugh, Science 188, 38 (1975).
[CrossRef]

McDonald, F. A.

F. A. McDonald, Appl. Opt. 18, 1363 (1979).
[CrossRef]

G. C. Wetsel and F. A. McDonald, Appl. Phys. Lett. 30, 252 (1977).
[CrossRef]

Oomens, J.

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 2203–2206.

Pellaux, J. P.

J. Breguet, J. P. Pellaux, and N. Gisin, Sens. Actuators A 48, 29 (1995).
[CrossRef]

Rector, J. H.

G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, Meas. Sci. Technol. 21, 094033 (2010).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Schilt, S.

S. Schilt and L. Thevenaz, Infrared Phys. Technol. 48, 154 (2006).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003).
[CrossRef]

Slaman, M.

G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, Meas. Sci. Technol. 21, 094033 (2010).
[CrossRef]

te Lintel Hekkert, S.

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 2203–2206.

Thevenaz, L.

S. Schilt and L. Thevenaz, Infrared Phys. Technol. 48, 154 (2006).
[CrossRef]

Wang, J.

Q. Wang, J. Wang, L. Li, and Q. Yu, Sens. Actuators B 153, 214 (2011).
[CrossRef]

Wang, Q.

Q. Wang, J. Wang, L. Li, and Q. Yu, Sens. Actuators B 153, 214 (2011).
[CrossRef]

Wetsel, G. C.

G. C. Wetsel and F. A. McDonald, Appl. Phys. Lett. 30, 252 (1977).
[CrossRef]

Wilcken, K.

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, Microchem. J. 76, 151 (2004).
[CrossRef]

Yu, Q.

Q. Wang, J. Wang, L. Li, and Q. Yu, Sens. Actuators B 153, 214 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. C. Wetsel and F. A. McDonald, Appl. Phys. Lett. 30, 252 (1977).
[CrossRef]

Infrared Phys. Technol. (1)

S. Schilt and L. Thevenaz, Infrared Phys. Technol. 48, 154 (2006).
[CrossRef]

J. Appl. Phys. (1)

A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Meas. Sci. Technol. (1)

G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, Meas. Sci. Technol. 21, 094033 (2010).
[CrossRef]

Microchem. J. (1)

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, Microchem. J. 76, 151 (2004).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003).
[CrossRef]

Science (1)

T. H. Maugh, Science 188, 38 (1975).
[CrossRef]

Sens. Actuators A (1)

J. Breguet, J. P. Pellaux, and N. Gisin, Sens. Actuators A 48, 29 (1995).
[CrossRef]

Sens. Actuators B (1)

Q. Wang, J. Wang, L. Li, and Q. Yu, Sens. Actuators B 153, 214 (2011).
[CrossRef]

Other (3)

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 2203–2206.

A. G. Bell, The Manufacturer and Builder (1881), Vol. 13, pp. 156–158.
[CrossRef]

Declaration of interest: one of the authors (DI) is a share holder of Optics11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic view of a ferrule-top PA spectrometer. The ferrule is initially machined with a precise diamond wire saw to fabricate a thin flap at the top. Next, the flap is carved, by means of picosecond laser ablation, to define the flexural springs. Finally, a glass tube is mounted underneath the transducer and two fibers are glued to shine light into the tube (excitation fiber) and to look at the displacement of the transducer (readout fiber), respectively. (b) Optical microscope image of the transducer after the laser ablation process (top view). (c) 3D sketch of the ferrule-top PA spectrometer.

Fig. 2.
Fig. 2.

Schematic view of the readout and excitation setup. The bending of the transducer is measured from the interference signal coming back from the Fabry–Perot cavity created between the fiber end and the transducer. To achieve high sensitivity, the laser wavelength can be tuned to match the quadrature condition. Another laser, connected to the excitation fiber, is used to excite the gas molecules.

Fig. 3.
Fig. 3.

(a) PA signal measured for different concentration of C 2 H 2 in Ar. (b) Linear fit of the data points extracted from (a). The data presented in this figure were collected with a lock-in amplifier time constant of 300 ms. From this graph, it is clear that our spectrometer has a linear response within the range investigated.

Fig. 4.
Fig. 4.

PA signal obtained when the measurement chamber was filled with a gas mixture containing 0.1% of C 2 H 2 in Ar. Inset: output signal of the lock-in amplifier acquired outside the absorption range of C 2 H 2 over a prolonged time interval.

Fig. 5.
Fig. 5.

PA signal measured at the output of the lock-in amplifier in nonideal (noisy) laboratory conditions. The excitation laser was tuned to the maximum of the P(9) absorption line, and the lock-in integration time was set to 300 ms. The variation of the signal at the flat parts of the figure mainly comes from acoustic noise coupled into the chamber and from small flow variations in the vicinity of the sensor.

Metrics