Abstract

We present a high-optical-quality imaging needle for optical coherence tomography (OCT) that achieves sensitivity and resolution comparable to conventional free-space OCT sample arms. The side-viewing needle design utilizes total internal reflection from an angle-polished fiber tip, encased in a glass microcapillary. Fusion of the capillary to the fiber provides a robust, optical-quality output window. The needle’s focusing optics are based on an astigmatism-free design, which exploits the “focal shift” phenomenon for focused Gaussian beams to achieve equal working distances (WDs) for both axes. We present a fabricated needle with a WD ratio of 0.98 for imaging in an aqueous environment. Our needle achieves the highest sensitivity of currently reported OCT imaging needles (112 dB), and we demonstrate its performance by superficial imaging of human skin and 3D volumetric imaging within a biological sample.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, Opt. Lett. 25, 1520 (2000).
    [CrossRef]
  2. R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
    [CrossRef]
  3. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
    [CrossRef]
  4. Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
    [CrossRef]
  5. V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, Opt. Lett. 30, 1791 (2005).
    [CrossRef]
  6. K. M. Tan, M. Shishkov, A. Chee, M. B. Applegate, B. E. Bouma, and M. J. Suter, Biomed. Opt. Express 3, 1947 (2012).
    [CrossRef]
  7. J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, Opt. Lett. 34, 1943 (2009).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, 1986).

2012 (2)

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

K. M. Tan, M. Shishkov, A. Chee, M. B. Applegate, B. E. Bouma, and M. J. Suter, Biomed. Opt. Express 3, 1947 (2012).
[CrossRef]

2011 (1)

2010 (1)

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

2009 (1)

2005 (1)

2000 (1)

Applegate, M. B.

Bouma, B. E.

Canto, M. I. F.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

Chee, A.

Chudoba, C.

Cobb, M. J.

Curatolo, A.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

Fujimoto, J. G.

Giday, S. A.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

Huo, L.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, Opt. Lett. 34, 1943 (2009).
[CrossRef]

Hwang, J. H.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, Opt. Lett. 34, 1943 (2009).
[CrossRef]

Kirk, R. W.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

Ko, T.

Kucharczyk, W.

Lennon, A. M.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

Li, X. D.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, Opt. Lett. 34, 1943 (2009).
[CrossRef]

X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, Opt. Lett. 25, 1520 (2000).
[CrossRef]

Lorenser, D.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

Mao, Y. X.

Marcon, N. E.

McLaughlin, R. A.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

Munce, N.

Padvorac, J.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

Pitris, C.

Quirk, B. C.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

Robbins, P. D.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

Sampson, D. D.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

Saunders, C. M.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

Scolaro, L.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

Shin, E. J.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

Shishkov, M.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Standish, B.

Suter, M. J.

Tan, K. M.

Vitkin, I. A.

Wilson, B. C.

Wood, B. A.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

Wu, Y. C.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, Opt. Lett. 34, 1943 (2009).
[CrossRef]

Xi, J. F.

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, Opt. Lett. 34, 1943 (2009).
[CrossRef]

Yang, V. X. D.

Yang, X.

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (2)

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, IEEE J. Sel. Top. Quantum Electron. 18, 1184 (2012).
[CrossRef]

Y. C. Wu, J. F. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. D. Li, IEEE J. Sel. Top. Quantum Electron. 16, 863 (2010).
[CrossRef]

Opt. Lett. (4)

Other (1)

A. E. Siegman, Lasers (University Science, 1986).

Supplementary Material (1)

» Media 1: MPG (2462 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the OCT imaging needle design. See text for abbreviations. (b) Brightfield image of the TIR probe encased in a fused glass microcapillary. (c) Photo of the fully assembled side-viewing OCT 23-gauge needle.

Fig. 2.
Fig. 2.

(a) Schematic of a side-viewing probe with astigmatic output beam resulting from the curved output window interface. ng, ns, refractive index of glass and sample, respectively; WDx, WDy: WDs in x and y, respectively; and R, radius of curvature of the output interface. (b) Curves illustrating the anastigmatic design concept, obtained by evaluating Eqs. (1) and (2) for different values of γ. Solid curves, WD ratio; dotted curves, spot size ratio. The arrow indicates the anastigmatic point.

Fig. 3.
Fig. 3.

(a) WD and spot size ratios of our design goal (black curves) and our fabricated probe (gray curves), plotted as a function of the refractive power of the outer capillary interface. The design goal WD ratio (solid black curve) crosses the anastigmatic point at the refractive power of the capillary interface when it is immersed in water (vertical dashed line). (b) Measured and simulated beam profiles in air. (c) Simulated beam profile in water (n=1.321).

Fig. 4.
Fig. 4.

(a) OCT needle A-scan (solid curve) of a water/glass interface (peak 3) (see text for remaining peaks). A Lorentzian fit (dashed curve) to the measured probe confocal function (circles) gives the WD in water. (b) Radial OCT needle image of the surface of a finger and thumb. E, epidermis; D, dermis; S, sweat duct. (c) Cutaway view of a rendered 3D OCT needle image of a cucumber (Media 1). The needle tract is visible at the center of the volume with its rotation origin marked by the wedge at lower right.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

WDxWDy(Φ˜)=1+(1+γ2)Φ˜1+2Φ˜+(1+γ2)Φ˜2,
w0xw0y(Φ˜)=1(1+Φ˜)2+γ2Φ˜2,

Metrics