Abstract

The efficient electric field enhancement due to coating a dielectric wedge by plasmon-carrying nanowires has been demonstrated numerically within the framework of the finite-difference frequency-domain method. The numerical simulations show increasing of electric field intensity in the near-field region of the dielectric wedge coated by silver nanowires in the regime of local plasmon excitation up to 100 times versus the uncoated case.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. H. Berlien, Applied Laser Medicine (Springer-Verlag, 2003).
  2. R. M. Verdaasdonky and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
    [CrossRef]
  3. I. Melnik, Opt. Eng. 34, 1153 (1995).
    [CrossRef]
  4. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  5. A. M. Ivinskaya, A. V. Lavrinenko, and D. M. Shyroki, IEEE Trans. Antennas Propag. 59, 4155 (2011).
    [CrossRef]
  6. D. Shyroki and A. Lavrinenko, Phys. Stat. Sol. B 244, 3506 (2007).
    [CrossRef]
  7. M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
    [CrossRef]
  8. S. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media, 2007).
  9. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
    [CrossRef]

2011 (1)

A. M. Ivinskaya, A. V. Lavrinenko, and D. M. Shyroki, IEEE Trans. Antennas Propag. 59, 4155 (2011).
[CrossRef]

2010 (1)

M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
[CrossRef]

2007 (1)

D. Shyroki and A. Lavrinenko, Phys. Stat. Sol. B 244, 3506 (2007).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

1997 (1)

R. M. Verdaasdonky and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
[CrossRef]

1995 (1)

I. Melnik, Opt. Eng. 34, 1153 (1995).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Berlien, G. M. H.

G. M. H. Berlien, Applied Laser Medicine (Springer-Verlag, 2003).

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Dmitruk, N.

M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Ivinskaya, A. M.

A. M. Ivinskaya, A. V. Lavrinenko, and D. M. Shyroki, IEEE Trans. Antennas Propag. 59, 4155 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Korovin, A.

M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
[CrossRef]

Lavrinenko, A.

D. Shyroki and A. Lavrinenko, Phys. Stat. Sol. B 244, 3506 (2007).
[CrossRef]

Lavrinenko, A. V.

A. M. Ivinskaya, A. V. Lavrinenko, and D. M. Shyroki, IEEE Trans. Antennas Propag. 59, 4155 (2011).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Lytvyn, O.

M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
[CrossRef]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media, 2007).

Mamykin, S.

M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
[CrossRef]

Martin-Mareno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Melnik, I.

I. Melnik, Opt. Eng. 34, 1153 (1995).
[CrossRef]

Mynko, V.

M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
[CrossRef]

Shyroki, D.

D. Shyroki and A. Lavrinenko, Phys. Stat. Sol. B 244, 3506 (2007).
[CrossRef]

Shyroki, D. M.

A. M. Ivinskaya, A. V. Lavrinenko, and D. M. Shyroki, IEEE Trans. Antennas Propag. 59, 4155 (2011).
[CrossRef]

Sosnova, M.

M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
[CrossRef]

van Swol, C. F. P.

R. M. Verdaasdonky and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
[CrossRef]

Verdaasdonky, R. M.

R. M. Verdaasdonky and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
[CrossRef]

Appl. Phys. B (1)

M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

A. M. Ivinskaya, A. V. Lavrinenko, and D. M. Shyroki, IEEE Trans. Antennas Propag. 59, 4155 (2011).
[CrossRef]

Opt. Eng. (1)

I. Melnik, Opt. Eng. 34, 1153 (1995).
[CrossRef]

Phys. Med. Biol. (1)

R. M. Verdaasdonky and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Stat. Sol. B (1)

D. Shyroki and A. Lavrinenko, Phys. Stat. Sol. B 244, 3506 (2007).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Other (2)

S. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media, 2007).

G. M. H. Berlien, Applied Laser Medicine (Springer-Verlag, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Spectra of electric field intensity in arbitrary units averaged over the air contour along the coating structure. Solid lines correspond to p-polarization, and dashed ones correspond to s-polarization. Coating types A, B, C, and D with input focused light are schematically shown above the curves.

Fig. 2.
Fig. 2.

Spatial distributions of electric field intensity for the wedge with various coatings at resonant frequencies 770 nm (type B), 800 nm (type C), and 880 nm (type D) wavelength. The upper parts of the figures correspond to the s-polarized light, and the lower ones correspond to p-polarized light.

Fig. 3.
Fig. 3.

Spectra of electric field intensity for p-polarized light in arbitrary units at spatial points identified in Fig. 2 with high electric intensity for coating types presented in Figs. 1 and 2. Dashed lines represent the corresponding spectra for the case of a noncoated wedge.

Fig. 4.
Fig. 4.

Ratios of spatial distributions of electric field intensity between the wedge with various coverings defined by three types (B, C, and D) and noncoated wedge at resonant frequencies as in Fig. 2. The upper parts of the figures correspond to the s-polarized light, and the lower ones correspond to p-polarized light. White spots in the intensity ratio correspond to division on values being less 0.01. The insets present corresponding spatial distributions of electric field intensity for the noncoated wedge.

Metrics