Abstract

We demonstrate optical time-stretch confocal microscopy in the 1  μm spectral window for high-speed and high-resolution cellular imaging. In contrast to the prior demonstrations of time-stretch imaging, which all operated in the telecommunication band, the present work extends the utility of this imaging modality to a wavelength regime (1μm), which is well known to be the optimal diagnostic window in biophotonics. This imaging technique enables us to image the nasopharyngeal epithelial cells with cellular resolution (<2μm), at a line scan rate of 10 MHz, and with a field of view as wide as 0.44mm×0.1mm. We also theoretically and experimentally characterized the system performance. As the low-loss dispersive fibers for the time-stretch process as well as other essential optical components for enhancing the imaging sensitivity are commonly available at 1  μm, time-stretch confocal microscopy in this wavelength range could usher in realizing high-speed cell imaging with an unprecedented throughput.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
    [CrossRef]
  2. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, Clin. Lab. Med. 27, 653 (2007).
    [CrossRef]
  3. M. A. Owens and M. R. Loken, in Flow Cytometry Principles for Clinical Laboratory Practice: Quality Assurance for Quantitative Immunophenotyping (Wiley-Liss, 1994).
  4. K. Goda, K. K. Tsia, and B. Jalali, Appl. Phys. Lett. 93, 131109 (2008).
    [CrossRef]
  5. A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, Appl. Phys. Lett. 98, 101107 (2011).
    [CrossRef]
  6. A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, Biomed. Opt. Express 2, 3387 (2011).
    [CrossRef]
  7. F. Qian, Q. Song, E.-k. Tien, S. K. Kalyoncu, and O. Boyraz, Opt. Commun. 282, 4672 (2009).
    [CrossRef]
  8. J. B. Pawley, ed., in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  9. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010).
    [CrossRef]
  10. G. J. Tearney, M. Shishkov, and B. E. Bouma, Opt. Lett. 27, 412 (2002).
    [CrossRef]
  11. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
    [CrossRef]
  12. C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, Opt. Express 19, 15810 (2011).
    [CrossRef]
  13. R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, Biomed. Opt. 7, 398 (2002).
    [CrossRef]
  14. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, Opt. Lett. 36, 160 (2011).
    [CrossRef]

2011

2010

2009

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

F. Qian, Q. Song, E.-k. Tien, S. K. Kalyoncu, and O. Boyraz, Opt. Commun. 282, 4672 (2009).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

2008

K. Goda, K. K. Tsia, and B. Jalali, Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

2007

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, Clin. Lab. Med. 27, 653 (2007).
[CrossRef]

2002

R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, Biomed. Opt. 7, 398 (2002).
[CrossRef]

G. J. Tearney, M. Shishkov, and B. E. Bouma, Opt. Lett. 27, 412 (2002).
[CrossRef]

Ayazi, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

Basiji, D. A.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, Clin. Lab. Med. 27, 653 (2007).
[CrossRef]

Bouma, B. E.

Boyraz, O.

F. Qian, Q. Song, E.-k. Tien, S. K. Kalyoncu, and O. Boyraz, Opt. Commun. 282, 4672 (2009).
[CrossRef]

Capewell, D.

Cheung, K. K. Y.

Collier, T.

R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, Biomed. Opt. 7, 398 (2002).
[CrossRef]

Di Carlo, D.

Drezek, R.

R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, Biomed. Opt. 7, 398 (2002).
[CrossRef]

Fard, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

Fard, A. M.

Follen, M.

R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, Biomed. Opt. 7, 398 (2002).
[CrossRef]

Goda, K.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, Biomed. Opt. Express 2, 3387 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

Gossett, D. R.

Jalali, B.

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, Biomed. Opt. Express 2, 3387 (2011).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

Kalyoncu, S. K.

F. Qian, Q. Song, E.-k. Tien, S. K. Kalyoncu, and O. Boyraz, Opt. Commun. 282, 4672 (2009).
[CrossRef]

Kim, S. H.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

Liang, L.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, Clin. Lab. Med. 27, 653 (2007).
[CrossRef]

Loken, M. R.

M. A. Owens and M. R. Loken, in Flow Cytometry Principles for Clinical Laboratory Practice: Quality Assurance for Quantitative Immunophenotyping (Wiley-Liss, 1994).

Lotan, R.

R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, Biomed. Opt. 7, 398 (2002).
[CrossRef]

Mahjoubfar, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, Biomed. Opt. Express 2, 3387 (2011).
[CrossRef]

Morrissey, P.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, Clin. Lab. Med. 27, 653 (2007).
[CrossRef]

Ortyn, W. E.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, Clin. Lab. Med. 27, 653 (2007).
[CrossRef]

Owens, M. A.

M. A. Owens and M. R. Loken, in Flow Cytometry Principles for Clinical Laboratory Practice: Quality Assurance for Quantitative Immunophenotyping (Wiley-Liss, 1994).

Qian, F.

F. Qian, Q. Song, E.-k. Tien, S. K. Kalyoncu, and O. Boyraz, Opt. Commun. 282, 4672 (2009).
[CrossRef]

Qiu, Y.

Richards-Kortum, R.

R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, Biomed. Opt. 7, 398 (2002).
[CrossRef]

Shishkov, M.

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

Song, Q.

F. Qian, Q. Song, E.-k. Tien, S. K. Kalyoncu, and O. Boyraz, Opt. Commun. 282, 4672 (2009).
[CrossRef]

Tearney, G. J.

Tien, E.-k.

F. Qian, Q. Song, E.-k. Tien, S. K. Kalyoncu, and O. Boyraz, Opt. Commun. 282, 4672 (2009).
[CrossRef]

Tsia, K. K.

K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, Opt. Lett. 36, 160 (2011).
[CrossRef]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, Opt. Express 19, 15810 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

Venkatachalam, V.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, Clin. Lab. Med. 27, 653 (2007).
[CrossRef]

Wong, K. K. Y.

Zhang, C.

Zhou, Y.

Zhu, R.

Appl. Phys. Lett.

K. Goda, K. K. Tsia, and B. Jalali, Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

Biomed. Opt.

R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, Biomed. Opt. 7, 398 (2002).
[CrossRef]

Biomed. Opt. Express

Clin. Lab. Med.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, Clin. Lab. Med. 27, 653 (2007).
[CrossRef]

Nature

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

Opt. Commun.

F. Qian, Q. Song, E.-k. Tien, S. K. Kalyoncu, and O. Boyraz, Opt. Commun. 282, 4672 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

Other

M. A. Owens and M. R. Loken, in Flow Cytometry Principles for Clinical Laboratory Practice: Quality Assurance for Quantitative Immunophenotyping (Wiley-Liss, 1994).

J. B. Pawley, ed., in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the time-stretch confocal microscope. Box 1: Supercontinuum (SC) pulse. Box 2: Spectrally encoded SC pulse. Box 3: Encoded and time-stretched SC pulse.

Fig. 2.
Fig. 2.

Calculated spatial resolution of the current time-stretch confocal microscope in three limiting cases [9]: spatial-dispersion-limited (red), SPA-limited (green), and digitizer-limited (blue), as a function of GVD. The dashed line (orange) locates the GVD of the fiber used in the system.

Fig. 3.
Fig. 3.

Comparison between (a) spectrally encoded image and (b) time-stretch image of the smallest group (Group 7) of a resolution target (USAF-1951). (c) Spectrally encoded scan (red) and time-stretch scan (blue), as indicated in (a) and (b), respectively. The zoom-in view of the smallest element is shown in the left inset.

Fig. 4.
Fig. 4.

Images of the nasopharyngeal epithelial cells captured by (a) bright-field light microscopy, (b) spectrally encoded imaging, and (c) time-stretch microscopy.

Metrics