Abstract

Acousto-optical coherence tomography (AOCT) consists in using random phase jumps on ultrasound and light to achieve a millimeter resolution when imaging thick scattering media. We combined this technique with heterodyne off-axis digital holography. Two-dimensional images of absorbing objects embedded in scattering phantoms are obtained with a good signal-to-noise ratio. We study the impact of the phase modulation characteristics on the amplitude of the acousto-optic signal and on the contrast and apparent size of the absorbing inclusion.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
    [CrossRef]
  2. P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, Opt. Express 17, 15932 (2009).
    [CrossRef]
  3. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
  4. W. Leutz and G. Maret, Physica B 204, 14 (1995).
    [CrossRef]
  5. L.-H. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
    [CrossRef]
  6. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, Opt. Lett. 29, 2509 (2004).
    [CrossRef]
  7. S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, Opt. Lett. 35, 1798 (2010).
    [CrossRef]
  8. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, Opt. Lett. 30, 1360 (2005).
    [CrossRef]
  9. M. Lesaffre, S. Farahi, M. Gross, P. Delaye, A. C. Boccara, and F. Ramaz, Opt. Express 17, 18211 (2009).
    [CrossRef]
  10. F. Le Clerc, L. Collot, and M. Gross, Opt. Lett. 25, 716 (2000).
    [CrossRef]
  11. I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997).
    [CrossRef]
  12. M. Gross and M. Atlan, Opt. Lett. 32, 909 (2007).
    [CrossRef]
  13. M. Lesaffre, S. Farahi, A. C. Boccara, F. Ramaz, and M. Gross, J. Opt. Soc. Am. A 28, 1436 (2011).
    [CrossRef]

2011 (1)

2010 (1)

2009 (2)

2007 (1)

2005 (2)

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, Opt. Lett. 30, 1360 (2005).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef]

2004 (1)

2000 (1)

1998 (1)

1997 (1)

1995 (1)

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

1993 (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef]

Atlan, M.

Blonigen, F.

Boccara, A. C.

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).

Collot, L.

Cubeddu, R.

Delaye, P.

DiMarzio, C. A.

Farahi, S.

Forget, B. C.

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef]

Grabar, A. A.

Gross, M.

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef]

Huignard, J.-P.

Ku, G.

Le Clerc, F.

Lesaffre, M.

Leutz, W.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Maguluri, G.

Maret, G.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).

Montemezzani, G.

Murray, T. W.

Nieva, A.

Pifferi, A.

Ramaz, F.

Roy, R. A.

Salvagnini, E.

Spinelli, L.

Sui, L.

Taroni, P.

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).

Torricelli, A.

Wang, L.-H.

Yamaguchi, I.

Zhang, T.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. HWP, half-wave plate, PBS, polarizing beam splitter; AOM1, AOM2, acousto-optic modulators; FI, Faraday isolator; UT, ultrasound transducer; fC, camera framerate; fL, laser frequency. In the tank, the scheme axes are modified in order to give a view of the inside.

Fig. 2.
Fig. 2.

(a) AO profiles along y axis of a scattering phantom (thickness=3cm, μs=10cm1), containing a black-inked cylinder of 10×6×6mm3 (x, y, z). The same AO profile is represented with different resolution values. fC=500Hz. (b) Shape of the absorbing inclusion, extracted from the AO profile with a 2.25 mm resolution. (c) Numerical simulation of the normalized autocorrelation function of the phase modulation sequences used to obtain the AO profiles in (a).

Fig. 3.
Fig. 3.

Characteristics of the AO profile as functions of the resolution: (a) amplitude, (b) contrast, (c) full width at half maximum of the inclusion (FWHM).

Fig. 4.
Fig. 4.

(a) AO image of the same phantom as in Fig. 2, performed with Δy=3mm axial resolution, fC=500Hz. (b) AO image of a xy section of a scattering phantom (thickness=4cm, μs=10cm1) with two absorbing inclusions of 3×3×5mm3 (x, y, z), performed with Δy=2.25mm axial resolution, fC=500Hz.

Fig. 5.
Fig. 5.

AO profile along the acoustic axis of a 10%-Intralipid and agar scattering phantom (thickness=2cm, μs=10cm1) with a black-inked absorbing inclusion of 3×3×6mm3 (x, y, z), performed with Δy=2.6mm axial resolution thanks to random phase jumps (filled dots) or bursts (empty dots), fC=1kHz.

Metrics