Abstract

Adaptive optics in astronomical and other imaging systems allows compensation of aberrations introduced by random variations of the refractive index in the imaging path. I propose what I believe is a new type of adaptive optics system that dispenses with the hardware lenslet arrays and deformable mirrors of conventional systems. Theoretical and experimental studies show that wavefront sensing and compensation can be achieved by numerical processing of digital holograms of the incoherent object and a guide star. The incoherent digital holographic adaptive optics is seen to be particularly robust and efficient, with envisioned applications in astronomical imaging, as well as fluorescence microscopy and remote sensing.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).
  2. J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
    [CrossRef]
  3. M. C. Liu, http://arxiv.org/abs/astro-ph/0609207 (2006).
  4. R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).
  5. C. G. Liu and M. K. Kim, Opt. Lett. 36, 2710 (2011).
    [CrossRef]
  6. M. K. Kim, SPIE Rev. 1, 018005 (2010).
    [CrossRef]
  7. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  8. J. Upatnieks, A. V. Lugt, and E. N. Leith, Appl. Opt. 5, 589 (1966).
    [CrossRef]
  9. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
    [CrossRef]
  10. T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, J. Opt. Soc. Am. A 23, 3177 (2006).
    [CrossRef]
  11. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 57, 975 (1967).
    [CrossRef]
  12. G. Sirat and D. Psaltis, Opt. Lett. 10, 4 (1985).
    [CrossRef]
  13. S. G. Kim, B. Lee, and E. S. Kim, Appl. Opt. 36, 4784 (1997).
    [CrossRef]
  14. L. M. Mugnier, G. Y. Sirat, and D. Charlot, Opt. Lett. 18, 66 (1993).
    [CrossRef]
  15. T. C. Poon, J. Opt. Soc. Korea 13, 406 (2009).
    [CrossRef]
  16. J. Rosen and G. Brooker, Opt. Lett. 32, 912 (2007).
    [CrossRef]
  17. J. Rosen and G. Brooker, Nat. Photon. 2, 190 (2008).
    [CrossRef]
  18. I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997).
    [CrossRef]
  19. G. Brooker, N. Siegel, V. Wang, and J. Rosen, Opt. Express 19, 5047 (2011).
    [CrossRef]

2011 (2)

2010 (1)

M. K. Kim, SPIE Rev. 1, 018005 (2010).
[CrossRef]

2009 (1)

2008 (1)

J. Rosen and G. Brooker, Nat. Photon. 2, 190 (2008).
[CrossRef]

2007 (2)

J. Rosen and G. Brooker, Opt. Lett. 32, 912 (2007).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

2006 (1)

1997 (2)

1993 (2)

L. M. Mugnier, G. Y. Sirat, and D. Charlot, Opt. Lett. 18, 66 (1993).
[CrossRef]

J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
[CrossRef]

1985 (1)

1967 (1)

1966 (1)

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Aspert, N.

Beckers, J. M.

J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
[CrossRef]

Bourquin, S.

Brooker, G.

Charlot, D.

Charriere, F.

Colomb, T.

Cuche, E.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Depeursinge, C.

Ferraro, P.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Finizio, A.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Grilli, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Kim, E. S.

Kim, M. K.

C. G. Liu and M. K. Kim, Opt. Lett. 36, 2710 (2011).
[CrossRef]

M. K. Kim, SPIE Rev. 1, 018005 (2010).
[CrossRef]

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

Kim, S. G.

Kuhn, J.

Lee, B.

Leith, E. N.

Liu, C. G.

Liu, M. C.

M. C. Liu, http://arxiv.org/abs/astro-ph/0609207 (2006).

Lugt, A. V.

Marian, A.

Marquet, P.

Miccio, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Montfort, F.

Mugnier, L. M.

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Poon, T. C.

Psaltis, D.

Rosen, J.

Siegel, N.

Sirat, G.

Sirat, G. Y.

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).

R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).

Upatnieks, J.

Wang, V.

Yamaguchi, I.

Zhang, T.

Annu. Rev. Astron. Astrophys. (1)

J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

Nat. Photon. (1)

J. Rosen and G. Brooker, Nat. Photon. 2, 190 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

SPIE Rev. (1)

M. K. Kim, SPIE Rev. 1, 018005 (2010).
[CrossRef]

Other (4)

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

M. C. Liu, http://arxiv.org/abs/astro-ph/0609207 (2006).

R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical schematic of IDHAO system: S, object plane, including a guide star; L, lenses; M1, piezo-mounted plane mirror; M2, curved mirror; Ψ, aberrator; IF, interference filter.

Fig. 2.
Fig. 2.

Simulation example of IDHAO: (a) assumed object pattern, (b) assumed phase aberration consisting of Zernike terms (0.5)2π×[Z3+1+Z51], (c) amplitude (upper) and phase (lower) of complex hologram, uncorrected, (d) best focus image reconstructed from the uncorrected hologram, (e) hologram of a guide star, (f) corrected hologram by IDHAO, and (g) best focus image reconstructed from the corrected hologram. In all phase profiles, the blue–white–red color map corresponds to the phase range of [π,π].

Fig. 3.
Fig. 3.

Experimental demonstration of IDHAO using three red LEDs as the object: (a) complex hologram without aberrator, (b) reconstructed image, (c) complex hologram with aberrator, (d) best focus image reconstructed from the uncorrected hologram, (e) one of four holograms captured by camera without aberrator, (f) one of four holograms with the aberrator, (g) complex hologram of one LED as guide star, (h) corrected hologram by IDHAO, and (i) best focus image reconstructed from the corrected hologram.

Fig. 4.
Fig. 4.

Experimental demonstration of IDHAO of extended objects. Upper row, reconstructed images from uncorrected hologram; lower row, from corrected hologram. Left, resolution target without aberrator; middle, resolution target with an aberrator; right, chess pawn, no aberrator but low fringe contrast.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H(xh,yh)=dxodyoIo(xo,yo)QZi(xhxo,yhyo)=[IoQZi](xh,yh),
HΨ(xh,yh)=[IoGΨ](xh,yh),

Metrics