Abstract

We report the first observation (to our best knowledge) of a constant intensity, quasi-Bessel/nondiffracting beam in an absorbing medium generated by a novel optical element, “exicon,” or exponential intensity axicon. Such absorption-compensated and diffraction-resistant beams can find applications in illumination, remote sensing, free-space communications, imaging in biological tissues, nonlinear optics, and other situations where absorption and diffraction hinder light propagation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef]
  2. G. Toraldo di Francia, Nuovo Cimento Suppl. 9, 426 (1952).
    [CrossRef]
  3. V. P. Kalosha and I. Golub, Opt. Lett. 32, 3540 (2007).
    [CrossRef]
  4. Y. Silberberg, Opt. Lett. 15, 1282 (1990).
    [CrossRef]
  5. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Nat. Photon. 4, 103 (2010).
    [CrossRef]
  6. I. Golub, Opt. Lett. 20, 1847 (1995).
    [CrossRef]
  7. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
    [CrossRef]
  8. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
    [CrossRef]
  9. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Nat. Photon. 5, 372 (2011).
    [CrossRef]
  10. J. H. McLeod, J. Opt. Soc. Am. 44, 592 (1954).
    [CrossRef]
  11. Z. Jaroszewicz, A. Burvall, and T. Friberg, Opt. Photon. News 16, 34 (2005).
    [CrossRef]
  12. I. Golub, Opt. Lett. 31, 1890 (2006).
    [CrossRef]
  13. J. Sochacki, S. Bara, Z. Jaroszewicz, and A. Kolodziejczyk, Opt. Lett. 17, 7 (1992).
    [CrossRef]
  14. I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, Opt. Lett. 35, 2828 (2010).
    [CrossRef]
  15. F. O. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photon. 4, 780 (2010).
    [CrossRef]
  16. I. Golub and T. Mirtchev, Opt. Lett. 34, 1528 (2009).
    [CrossRef]

2011 (1)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Nat. Photon. 5, 372 (2011).
[CrossRef]

2010 (3)

I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, Opt. Lett. 35, 2828 (2010).
[CrossRef]

F. O. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photon. 4, 780 (2010).
[CrossRef]

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Nat. Photon. 4, 103 (2010).
[CrossRef]

2009 (1)

2007 (3)

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

V. P. Kalosha and I. Golub, Opt. Lett. 32, 3540 (2007).
[CrossRef]

2006 (1)

2005 (1)

Z. Jaroszewicz, A. Burvall, and T. Friberg, Opt. Photon. News 16, 34 (2005).
[CrossRef]

1995 (1)

1992 (1)

1990 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

1954 (1)

1952 (1)

G. Toraldo di Francia, Nuovo Cimento Suppl. 9, 426 (1952).
[CrossRef]

Bara, S.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Nat. Photon. 5, 372 (2011).
[CrossRef]

Burvall, A.

Z. Jaroszewicz, A. Burvall, and T. Friberg, Opt. Photon. News 16, 34 (2005).
[CrossRef]

Chebbi, B.

Chong, A.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Nat. Photon. 4, 103 (2010).
[CrossRef]

Christodoulides, D. N.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Nat. Photon. 4, 103 (2010).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[CrossRef]

di Francia, G. Toraldo

G. Toraldo di Francia, Nuovo Cimento Suppl. 9, 426 (1952).
[CrossRef]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photon. 4, 780 (2010).
[CrossRef]

Friberg, T.

Z. Jaroszewicz, A. Burvall, and T. Friberg, Opt. Photon. News 16, 34 (2005).
[CrossRef]

Golub, I.

Jaroszewicz, Z.

Z. Jaroszewicz, A. Burvall, and T. Friberg, Opt. Photon. News 16, 34 (2005).
[CrossRef]

J. Sochacki, S. Bara, Z. Jaroszewicz, and A. Kolodziejczyk, Opt. Lett. 17, 7 (1992).
[CrossRef]

Kalosha, V. P.

Katz, O.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Nat. Photon. 5, 372 (2011).
[CrossRef]

Kolodziejczyk, A.

McLeod, J. H.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Mirtchev, T.

Nowacki, D.

Renninger, W. H.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Nat. Photon. 4, 103 (2010).
[CrossRef]

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photon. 4, 780 (2010).
[CrossRef]

Shaw, D.

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Nat. Photon. 5, 372 (2011).
[CrossRef]

Y. Silberberg, Opt. Lett. 15, 1282 (1990).
[CrossRef]

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photon. 4, 780 (2010).
[CrossRef]

Siviloglou, G. A.

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Nat. Photon. 5, 372 (2011).
[CrossRef]

Sochacki, J.

Wise, F. W.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Nat. Photon. 4, 103 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photon. (3)

F. O. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photon. 4, 780 (2010).
[CrossRef]

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Nat. Photon. 4, 103 (2010).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Nat. Photon. 5, 372 (2011).
[CrossRef]

Nuovo Cimento Suppl. (1)

G. Toraldo di Francia, Nuovo Cimento Suppl. 9, 426 (1952).
[CrossRef]

Opt. Lett. (8)

Opt. Photon. News (1)

Z. Jaroszewicz, A. Burvall, and T. Friberg, Opt. Photon. News 16, 34 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sag/surface profile of an exicon generating an exponentially growing beam from d1=0.1m to d2=0.7m. The dashed/dotted curves correspond to the sags of lenses of focal lengths d1 and d2.

Fig. 2.
Fig. 2.

Side photograph of beam propagation for (a) Gaussian beam in Rhodamine B solution with absorption coefficient α=7.5m1, (b) exicon-generated beam in lossless medium, and (c) exicon-generated beam in the same absorbing medium as in (a). In all three cases, the right side shows on-axis intensity measured using the CCD camera.

Fig. 3.
Fig. 3.

Measured on-axis intensity distribution of a Gaussian beam in the absorbing media (α=7.5m1) exhibiting Beer’s law exponential intensity decay.

Fig. 4.
Fig. 4.

Measured on-axis intensity distributions produced by the exicon in (a) air and (b) water. The fitted exponents are 10.1m1 and 7.6m1, respectively, for the two cases.

Fig. 5.
Fig. 5.

Directly measured on-axis intensity distribution of an exicon-produced beam in the same absorbing medium as in Fig. 3. The generated exponential intensity growth compensates for the exponential absorption by the medium resulting in practically constant on-axis intensity.

Metrics