Holographic fluorescence imaging is very promising, as it can obtain three-dimensional fluorescence imaging without scanning. However, the current method usually records holograms far from the image plane, with the fluorescence decaying when spreading broadly. Here we show that the signal-to-noise ratio (SNR) of fluorescence holography can be improved by recording the high-contrast interferogram near the image plane. We found that this can be achieved by setting the focal length of the lens for the reference wave (f2) close to that for the object wave (f1). With experiments, we demonstrate an example of an increase of about 21 times in SNR by changing f2 from infinity to 226 mm, which is close to f1 (323 mm).

© 2012 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. B. W. Schilling, T. C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, Opt. Lett. 22, 1506 (1997).
  2. J. Rosen and G. Brooker, Nat. Photon. 2, 190 (2008).
  3. J. Rosen, N. Siegel, and G. Brooker, Opt. Express 19, 26249 (2011).
  4. G. Brooker, N. Siegel, V. Wang, and J. Rosen, Opt. Express 19, 5047 (2011).
  5. P. Bouchal, J. Kapitan, R. Chmelik, and Z. Bouchal, Opt. Express 19, 15603 (2011).
  6. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, Appl. Opt. 45, 897 (2006).
  7. I. Yamaguchi, T. Matsumura, and J. Kato, Opt. Lett. 27, 1108 (2002).
  8. J. Rosen and G. Brooker, Opt. Lett. 32, 912 (2007).
  9. L. F. Yu and M. K. Kim, Opt. Lett. 30, 2092 (2005).

2011 (3)

2008 (1)

J. Rosen and G. Brooker, Nat. Photon. 2, 190 (2008).

2007 (1)

2006 (1)

2005 (1)

2002 (1)

1997 (1)

Bouchal, P.

Bouchal, Z.

Brooker, G.

Chmelik, R.

Cooper, J.

Courtial, J.

Gibson, G.

Indebetouw, G.

Jordan, P.

Kapitan, J.

Karunwi, K.

Kato, J.

Kim, M. K.

Laczik, Z. J.

Leach, J.

Matsumura, T.

Padgett, M.

Poon, T. C.

Rosen, J.

Schilling, B. W.

Shinoda, K.

Siegel, N.

Sinclair, G.

Storrie, B.

Suzuki, Y.

Thomson, L.

Wang, V.

Wu, M. H.

Wulff, K.

Yamaguchi, I.

Yu, L. F.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (3)

Fig. 1.
Fig. 1.

Schematic of a fluorescence holography system. DM, dichroic mirror; F, emission filter; P, polarizer. For convenience and clarity, the SLM is illustrated as transmissive here but is reflective in the actual system. Inset, detailed scheme of two rays interfering; the dotted white circle indicates the edge of the wavefront.

Fig. 2.
Fig. 2.

Maximum OPD curves with Ls=4mm and f1=323mm. Dashed black line, coherence length (ΔL=λ2/Δλ=0.524*0.524/0.024=11.4μm).

Fig. 3.
Fig. 3.

Comparison of the decoded phase (top row), reconstructed intensity images (middle row) and intensity profile (left of bottom row) of 510 nm diameter fluorescence bead for the three cases in Fig. 2, marked with the same colored symbols. The 1.4× and 8.8× are the minification factors of the wavefront. Right of bottom row: intensity distribution in xz plane of the bead marked by red spot in the middle row.

Tables (1)

Tables Icon

Table 1. Performance Comparison of the Different Fluorescence Holography Systems (f1=323mm)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.