Abstract

A nontomography approach for the measurement of angular-dependent coherent-scatter cross section of x rays (E4080keV) is described. It is shown that an analyzer crystal, which is proposed to be used for the sampling of the cross section, simultaneously provides information about the location of the scattering volume inside the object. A numerical simulation demonstrates that this method can be applied for nondestructive analysis of an object’s internal structure.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
    [CrossRef] [PubMed]
  2. G. Harding and J. Kosanetzky, J. Opt. Soc. Am. A 4, 933(1987).
    [CrossRef] [PubMed]
  3. M. S. Westmore, A. Fenster, and I. A. Cunningham, Med. Phys. 24, 3 (1997).
    [CrossRef] [PubMed]
  4. L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, 3rd ed. (1981), Vol.  3, para. 126.
  5. D. E. Peplow and K. Verghese, Phys. Med. Biol. 43, 2431 (1998).
    [CrossRef] [PubMed]

2006 (1)

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

1998 (1)

D. E. Peplow and K. Verghese, Phys. Med. Biol. 43, 2431 (1998).
[CrossRef] [PubMed]

1997 (1)

M. S. Westmore, A. Fenster, and I. A. Cunningham, Med. Phys. 24, 3 (1997).
[CrossRef] [PubMed]

1987 (1)

Anastasio, M. A.

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

Brankov, J. G.

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

Cunningham, I. A.

M. S. Westmore, A. Fenster, and I. A. Cunningham, Med. Phys. 24, 3 (1997).
[CrossRef] [PubMed]

Fenster, A.

M. S. Westmore, A. Fenster, and I. A. Cunningham, Med. Phys. 24, 3 (1997).
[CrossRef] [PubMed]

Harding, G.

Kosanetzky, J.

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, 3rd ed. (1981), Vol.  3, para. 126.

Li, J.

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, 3rd ed. (1981), Vol.  3, para. 126.

Muehleman, C.

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

Peplow, D. E.

D. E. Peplow and K. Verghese, Phys. Med. Biol. 43, 2431 (1998).
[CrossRef] [PubMed]

Verghese, K.

D. E. Peplow and K. Verghese, Phys. Med. Biol. 43, 2431 (1998).
[CrossRef] [PubMed]

Wernick, M. N.

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

Westmore, M. S.

M. S. Westmore, A. Fenster, and I. A. Cunningham, Med. Phys. 24, 3 (1997).
[CrossRef] [PubMed]

Yang, Y.

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

Zhong, Z.

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, Med. Phys. 33, 278 (2006).
[CrossRef] [PubMed]

M. S. Westmore, A. Fenster, and I. A. Cunningham, Med. Phys. 24, 3 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

D. E. Peplow and K. Verghese, Phys. Med. Biol. 43, 2431 (1998).
[CrossRef] [PubMed]

Other (1)

L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, 3rd ed. (1981), Vol.  3, para. 126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental scheme: (a) setup sketch; (b) reflectivity curve of a Si(333) analyzer crystal for E 0 = 60 keV ; (c) angular distributions of photon flux coherently scattered by water and Lucite (PMMA).

Fig. 2
Fig. 2

Setup geometry: (a) the model object; (b) projections of the A B interval (dash-dotted line) on crystal and detector planes at Θ n = 2 ° (solid line) and Θ n = 6 ° (dashed line).

Fig. 3
Fig. 3

Results of numerical simulation: (a) material distribution in the fragment of interest of the model object; (b) measured signal at Θ n = 2 ° , scanning beam positioned at x = 0.15 mm , y = 0 mm ; (c) measured signal at Θ n = 2 ° , 4 ° in the area x = 0 0.3 , z = 0 5 cm ; (d) recognition of materials, black and white correspond to minimum and maximum values, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d I ( y c , z c , Θ ) = I A exp ( < z μ d ) exp ( > z μ d ) × δ [ z ( z c y c t g Θ ) ] d σ coh ( z ) d Θ R ( Θ ) d Θ d z ,
R ( Θ ) { 1 if     Θ n Θ R < Θ < Θ n + Θ R , Θ R Θ n 0 for other     Θ , see Fig. 1(b) .
I ( y c , z c , Θ n ) = I B A ( z o , Θ n ) Δ ,

Metrics