Abstract

We report a novel (to the best of our knowledge) simultaneous 1310/1550 two-wavelength band swept laser source and dual-band common-path swept-source optical coherence tomography (SS-OCT). Synchronized dual- wavelength tuning is performed by using two laser cavities and narrowband wavelength filters with a single dual-window polygonal scanner. Measured average output powers of 60 and 27mW have been achieved for the 1310 and 1550nm bands, respectively, while the two wavelengths were swept simultaneously from 1227 to 1387nm for the 1310nm band and from 1519 to 1581nm for the 1550nm band at an A-scan rate of 65kHz. Broadband wavelength-division multiplexing is used for coupling two wavelengths into a common-path single-mode GRIN-lensed fiber probe to form dual-band common-path SS-OCT. Simultaneous OCT imaging at 1310 and 1550nm is achieved. This technique allows for in vivo high-speed OCT imaging with potential application in functional (spectroscopic) investigations.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. Fujimoto, Optical Coherence Tomography: Technology and Application (Springer, 2008).
    [CrossRef]
  2. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).
    [CrossRef]
  3. C. Xu, P. Carney, and S. Boppart, Opt. Express 13, 5450 (2005).
    [CrossRef] [PubMed]
  4. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, Opt. Express 15, 10832 (2007).
    [CrossRef] [PubMed]
  5. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, Opt. Express 16, 19434 (2008).
    [CrossRef] [PubMed]
  6. S. Kray, F. Spöler, M. Först, and H. Kurz, Opt. Lett. 34, 1970 (2009).
    [CrossRef] [PubMed]
  7. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, Opt. Express 11, 2953 (2003).
    [CrossRef] [PubMed]
  8. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, Opt. Express 13, 10523 (2005).
    [CrossRef] [PubMed]
  9. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, J. Biophoton. 2, 357 (2009).
    [CrossRef]
  10. S. M. R. M. Nezam, Opt. Lett. 33, 1741 (2008).
    [CrossRef]
  11. J. Zhang, B. Rao, L. Yu, and Z. Chen, Opt. Lett. 34, 3442 (2009).
    [CrossRef] [PubMed]
  12. Y. Mao, C. Flueraru, S. Sherif, and S. Chang, Opt. Commun. 282, 88 (2009).
    [CrossRef]
  13. Y. Mao, S. Chang, S. Sherif, and C. Flueraru, Appl. Opt. 46, 5887 (2007).
    [CrossRef] [PubMed]

2009 (4)

S. Kray, F. Spöler, M. Först, and H. Kurz, Opt. Lett. 34, 1970 (2009).
[CrossRef] [PubMed]

R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, J. Biophoton. 2, 357 (2009).
[CrossRef]

J. Zhang, B. Rao, L. Yu, and Z. Chen, Opt. Lett. 34, 3442 (2009).
[CrossRef] [PubMed]

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, Opt. Commun. 282, 88 (2009).
[CrossRef]

2008 (2)

2007 (2)

2005 (2)

2003 (1)

2000 (1)

Biedermann, R.

R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, J. Biophoton. 2, 357 (2009).
[CrossRef]

Boppart, S.

Bornemann, J.

Bouma, B. E.

Cable, A. E.

Carney, P.

Chang, S.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, Opt. Commun. 282, 88 (2009).
[CrossRef]

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, Appl. Opt. 46, 5887 (2007).
[CrossRef] [PubMed]

Chen, Z.

de Boer, J. F.

Drexler, W.

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).
[CrossRef]

W. Drexler and J. Fujimoto, Optical Coherence Tomography: Technology and Application (Springer, 2008).
[CrossRef]

Dubois, A.

Eigenwillig, C. M.

R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, J. Biophoton. 2, 357 (2009).
[CrossRef]

Flueraru, C.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, Opt. Commun. 282, 88 (2009).
[CrossRef]

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, Appl. Opt. 46, 5887 (2007).
[CrossRef] [PubMed]

Först, M.

Fujimoto, J.

W. Drexler and J. Fujimoto, Optical Coherence Tomography: Technology and Application (Springer, 2008).
[CrossRef]

Fujimoto, J. G.

Georges, P.

Grychtol, P.

Hermes, B.

Huber, R.

R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, J. Biophoton. 2, 357 (2009).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, Opt. Express 13, 10523 (2005).
[CrossRef] [PubMed]

Iftimia, N.

Ippen, E. P.

Jiang, J. Y.

Kärtner, F. X.

Kray, S.

Kurz, H.

Li, X. D.

Mao, Y.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, Opt. Commun. 282, 88 (2009).
[CrossRef]

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, Appl. Opt. 46, 5887 (2007).
[CrossRef] [PubMed]

Moreau, J.

Morgner, U.

Nezam, S. M. R. M.

Pitris, C.

Rao, B.

Sacchet, D.

Sherif, S.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, Opt. Commun. 282, 88 (2009).
[CrossRef]

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, Appl. Opt. 46, 5887 (2007).
[CrossRef] [PubMed]

Spöler, F.

Tearney, G. J.

Wieser, W.

R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, J. Biophoton. 2, 357 (2009).
[CrossRef]

Wojtkowski, M.

Xu, C.

Yu, L.

Yun, S. H.

Zhang, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the dual-band swept laser source: PC, polarization controllers; FBG, fiber Bragg grating; Cir, circulator.

Fig. 2
Fig. 2

(a) Measured normalized spectra, (b) oscilloscope traces (1550 band, solid curve; 1310 band, dotted curve) with start trigger (dashed curve) at a repetition rate of 65.19 kHz , and (c) output powers versus injection current of the SOA of our dual-band swept laser.

Fig. 3
Fig. 3

(a) Schematic diagram of our dual-band common-path SS-OCT system: D, detector; WDM, wavelength-division multiplex; solid and dotted curves, optical and electronic paths, respectively. (b) Point spread function of the two wavelength bands at different depths.

Fig. 4
Fig. 4

(a) In vivo color-encoded OCT image ( 3 mm × 1.2 mm ) of a human finger. Depth profiles: (b) human finger (c) eight stacked 0.1 mm microscope cover glasses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FSR = 2 · 1 T · 4 π N · cos ( θ litt ) ,
δ λ = 2 2 ln 2 · λ 0 · cos ( θ litt ) π · T · W ,

Metrics