Abstract

A recurrent problem in microscopy is the finite depth-of-focus linked to the NA of microscope objectives. Digital holographic microscopy (DHM) has the unique feature of being able to numerically change the focus from a single hologram without the need of moving the sample. Extended depth of focus of amplitude images has been demonstrated, but it has marginal interest for the metrological application of DHM that needs the topography. In this Letter, we demonstrate that DHM is able to provide not only extended depth-of-focus amplitude images but extended focused complex data from which the topography is computed. For this purpose, reflection and transmission measurements on micro-optics (microlens and retroreflector) performed by using standard reconstruction or the extended focused complex data are compared. These experiments demonstrate that DHM measures, from a single hologram acquisition, the accurate sample topography on a numerically increased depth-of-focus.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
    [CrossRef]
  2. J. Gass, A. Dakoff, and M. Kim, Opt. Lett. 28, 1141 (2003).
    [CrossRef] [PubMed]
  3. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, Opt. Express 15, 7231 (2007).
    [CrossRef] [PubMed]
  4. P. Ferraro, S. Grilli, D. Alfieri, S. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, Opt. Express 13, 6738 (2005).
    [CrossRef] [PubMed]
  5. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
    [CrossRef]
  6. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, J. Opt. Soc. Am. A 23, 3177 (2006).
    [CrossRef]
  7. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, Appl. Opt. 47, D176 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (2)

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, J. Opt. Soc. Am. A 23, 3177 (2006).
[CrossRef]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

2005 (1)

2003 (1)

1999 (1)

Alfieri, D.

Aspert, N.

Bourquin, S.

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Charrière, F.

Colomb, T.

Coppola, G.

Cuche, E.

Dakoff, A.

Depeursinge, C.

Dirksen, D.

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Emery, Y.

Ferraro, P.

Finizio, A.

Gass, J.

Grilli, S.

Javidi, B.

Kemper, B.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, Appl. Opt. 47, D176 (2008).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Kim, M.

Kühn, J.

Langehanenberg, P.

Marian, A.

Marquet, P.

Montfort, F.

Nicola, S.

Pierattini, G.

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Striano, V.

von Bally, G.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, Appl. Opt. 47, D176 (2008).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

DHM optical schematic: M, magnification.

Fig. 2
Fig. 2

Microlens array imaged by (a) AFM and (b), (c) DHM in (b) phase and (c) amplitude contrasts with a 50 × MO ( NA = 0.75 ) and with a wavelength of λ = 682.5 nm .

Fig. 3
Fig. 3

Comparison between profiles measured along the white lines defined on Figs. 2a, 2b, 4b, corresponding to AFM, standard DHM, and EDOF DHM images. The detail shows clearly that EDOF gives the right profile.

Fig. 4
Fig. 4

(a) 2D unwrapped image of Fig. 2b; (b) phase and (c) amplitude EDOF images obtained from the topography (a).

Fig. 5
Fig. 5

Amplitude (1) and phase (2) reconstructions of a high-aspect-ratio retroreflector ( n s = 1.52 ) immersed in distilled water ( n m = 1.332 ) measured in transmission with a 60 × MO, NA = 1.3 for different reconstruction distances (a) 3.6 cm , (b) 6.6 cm , (c) 11.0 cm , and (d) with the presented EDOF method.

Fig. 6
Fig. 6

Height profile computed from the phase measured along white lines defined in Fig. 5 for different reconstruction distances and for EDOF DHM.

Fig. 7
Fig. 7

Difference between the reconstruction distances and the EDOF profiles.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H r ( x , y ) = ϕ d λ / ( 4 π n m ) ,
H t ( x , y ) = ϕ d λ / [ 2 π ( n s n m ) ] ,
DOF = λ n m / NA 2 ,
d ( x , y ) = - s c M 2 H c ( x , y ) + d 0 .
δ H = DOF / P ,

Metrics