Abstract

α-divergence-based nonnegative tensor factorization (NTF) is applied to blind multispectral image (MSI) decomposition. The matrix of spectral profiles and the matrix of spatial distributions of the materials resident in the image are identified from the factors in Tucker3 and PARAFAC models. NTF preserves local structure in the MSI that is lost as a result of vectorization of the image when nonnegative matrix factorization (NMF)- or independent component analysis (ICA)-based decompositions are used. Moreover, NTF based on the PARAFAC model is unique up to permutation and scale under mild conditions. To achieve this, NMF- and ICA-based factorizations, respectively, require enforcement of sparseness (orthogonality) and statistical independence constraints on the spatial distributions of the materials resident in the MSI, and these conditions do not hold. We demonstrate efficiency of the NTF-based factorization in relation to NMF- and ICA-based factorizations on blind decomposition of the experimental MSI with the known ground truth.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription