Abstract

Capillaries, the smallest blood vessels, are the distal end of the vasculature where oxygen and nutrients are exchanged between blood and tissue. Hence, noninvasive imaging of capillaries and function in vivo has long been desired as a window to studying fundamental physiology, such as neurovascular coupling. Existing imaging modalities cannot provide the required sensitivity and spatial resolution. We present in vivo imaging of the microvasculature including single capillaries in mice using optical-resolution photoacoustic microscopy (OR-PAM) developed in our laboratory. OR-PAM provides a lateral resolution of 5μm and an imaging depth >0.7mm.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy

Hao F. Zhang, Konstantin Maslov, Meng-Lin Li, George Stoica, and Lihong V. Wang
Opt. Express 14(20) 9317-9323 (2006)

Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo

Zhenyuan Yang, Jianhua Chen, Junjie Yao, Riqiang Lin, Jing Meng, Chengbo Liu, Jinhua Yang, Xiang Li, Lihong Wang, and Liang Song
Opt. Express 22(2) 1500-1511 (2014)

Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective

Hui Wang, Xiaoquan Yang, Yanyan Liu, Bowen Jiang, and Qingming Luo
Opt. Express 21(20) 24210-24218 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription