Abstract

We present a simple upconversion fiber-optic confocal microscope design using a near-infrared laser for pumping of a rare-earth-doped glass powder. The nonlinear optical frequency conversion process is highly efficient with more than 2% upconversion fluorescence efficiency at a near-infrared pumping wavelength of 1.55μm. The upconversion confocal design allows the use of conventional Si detectors and 1.55μm near-infrared pump light. The lateral and axial resolutions of the system were equal to or better than 1.10 and 13.11μm, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Denk, H. J. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, and J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
    [CrossRef]
  3. F. Auzel, in Spectroscopy and Dynamics of Collective Excitations in Solids, B.Di Bartolo, ed. (Plenum Press, 1997).
  4. A. Fragola, L. Aigouy, Y. De Wilde, and M. Mortier, J. Microsc. 210, 198 (2003).
    [CrossRef] [PubMed]
  5. T. Dabbs and M. Glass, Appl. Opt. 31, 3030 (1992).
    [CrossRef] [PubMed]
  6. J. E. N. Jonkman and E. H. K. Stelzer, in Confocal and Two-Photon Microscopy, A.Diaspro, ed. (Wiley-Liss, 2002).
  7. D. H. Kim, I. K. Ilev, and J. U. Kang, "Fiber-optic confocal microscopy using a 1.55 μm fiber laser for multimodal biophotonics applications," IEEE J. Sel. Top. Quantum Electron. 14, 2008 (to be published).
    [PubMed]

2008

D. H. Kim, I. K. Ilev, and J. U. Kang, "Fiber-optic confocal microscopy using a 1.55 μm fiber laser for multimodal biophotonics applications," IEEE J. Sel. Top. Quantum Electron. 14, 2008 (to be published).
[PubMed]

2003

A. Fragola, L. Aigouy, Y. De Wilde, and M. Mortier, J. Microsc. 210, 198 (2003).
[CrossRef] [PubMed]

1996

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, and J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

1992

1990

W. Denk, H. J. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

D. H. Kim, I. K. Ilev, and J. U. Kang, "Fiber-optic confocal microscopy using a 1.55 μm fiber laser for multimodal biophotonics applications," IEEE J. Sel. Top. Quantum Electron. 14, 2008 (to be published).
[PubMed]

J. Biomed. Opt.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, and J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

J. Microsc.

A. Fragola, L. Aigouy, Y. De Wilde, and M. Mortier, J. Microsc. 210, 198 (2003).
[CrossRef] [PubMed]

Science

W. Denk, H. J. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other

F. Auzel, in Spectroscopy and Dynamics of Collective Excitations in Solids, B.Di Bartolo, ed. (Plenum Press, 1997).

J. E. N. Jonkman and E. H. K. Stelzer, in Confocal and Two-Photon Microscopy, A.Diaspro, ed. (Wiley-Liss, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup used for upconversion confocal microscopy.

Fig. 2
Fig. 2

Spectrum of (a) C-band fiber amplifier and (b) upconversion from UCP.

Fig. 3
Fig. 3

(a) Optical microscope images of CELL membrane. Upconversion confocal image of the sample using NA = 0.85 objective lens for (b) N = 100 , d = 4 μ m ; (c) N = 100 , d = 2 μ m ; and (d) N = 100 , d = 1 μ m .

Fig. 4
Fig. 4

Preparation of the sample combining CELL and UCP.

Fig. 5
Fig. 5

(a) z-directional and (b) x y planar irregularity of phosphor powder.

Metrics