Abstract

An analysis of the emitted light distribution for a single emitter located at the planar interface of two optical media was performed. The interface of a varying refractive index substrate with air was considered, which is a common case in luminescence microscopy (spectroscopy) experiments. A modification of the radiative recombination rate induced by the variation of the substrate together with the emitted radiation spatial redistribution were taken into account. Simulation results show that the collection efficiency of the emitted light can vary several times depending on the substrate choice and the emitter intrinsic quantum efficiency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).
    [CrossRef] [PubMed]
  2. H. Htoon, M. J. O'Connel, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004).
    [CrossRef] [PubMed]
  3. I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
    [CrossRef]
  4. N. J. Turro, Modern Molecular Photochemistry (Benjamin/Cummings, 1978), p. 298.
  5. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), p. 509.
  6. E. M. Purcell, Phys. Rev. 69, 681 (1946).
    [CrossRef]
  7. E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
    [CrossRef] [PubMed]
  8. R. Amos and W. L. Barnes, Phys. Rev. B 55, 7249 (1997).
    [CrossRef]
  9. D. W. Dearholt and W. R. McSpadden, Electromagnetic Wave Propagation (McGraw-Hill, 1973), p. 402.
  10. T. Grosges, A. Vial, and D. Barchiesi, Opt. Express 13, 8483 (2005).
    [CrossRef] [PubMed]
  11. H. L. Anderson, A Physicist's Desk Reference (American Institute of Physics, 1981), p. 272.
  12. I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, Appl. Surf. Sci. (to be published).

2006

I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
[CrossRef]

2005

2004

H. Htoon, M. J. O'Connel, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004).
[CrossRef] [PubMed]

1997

R. Amos and W. L. Barnes, Phys. Rev. B 55, 7249 (1997).
[CrossRef]

1996

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).
[CrossRef] [PubMed]

1995

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

1946

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Amos, R.

R. Amos and W. L. Barnes, Phys. Rev. B 55, 7249 (1997).
[CrossRef]

Anderson, H. L.

H. L. Anderson, A Physicist's Desk Reference (American Institute of Physics, 1981), p. 272.

Barchiesi, D.

Barnes, W. L.

R. Amos and W. L. Barnes, Phys. Rev. B 55, 7249 (1997).
[CrossRef]

Bawendi, M. G.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).
[CrossRef] [PubMed]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), p. 509.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), p. 509.

Cox, P. J.

H. Htoon, M. J. O'Connel, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004).
[CrossRef] [PubMed]

Dearholt, D. W.

D. W. Dearholt and W. R. McSpadden, Electromagnetic Wave Propagation (McGraw-Hill, 1973), p. 402.

Doorn, S. K.

H. Htoon, M. J. O'Connel, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004).
[CrossRef] [PubMed]

Elfström, N.

I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
[CrossRef]

Elliman, R. G.

I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
[CrossRef]

Empedocles, S. A.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).
[CrossRef] [PubMed]

Galeckas, A.

I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
[CrossRef]

Grosges, T.

Htoon, H.

H. Htoon, M. J. O'Connel, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004).
[CrossRef] [PubMed]

Klimov, V. I.

H. Htoon, M. J. O'Connel, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004).
[CrossRef] [PubMed]

Kobayashi, Y.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, Appl. Surf. Sci. (to be published).

Lagendijk, A.

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

Linnros, J.

I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
[CrossRef]

McSpadden, W. R.

D. W. Dearholt and W. R. McSpadden, Electromagnetic Wave Propagation (McGraw-Hill, 1973), p. 402.

Murashita, T.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, Appl. Surf. Sci. (to be published).

Norris, D. J.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).
[CrossRef] [PubMed]

O'Connel, M. J.

H. Htoon, M. J. O'Connel, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004).
[CrossRef] [PubMed]

Omi, H.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, Appl. Surf. Sci. (to be published).

Polman, A.

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Snoeks, E.

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

Sychugov, I.

I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
[CrossRef]

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, Appl. Surf. Sci. (to be published).

Turro, N. J.

N. J. Turro, Modern Molecular Photochemistry (Benjamin/Cummings, 1978), p. 298.

Vial, A.

Wilkinson, A. R.

I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
[CrossRef]

Appl. Phys. Lett.

I. Sychugov, A. Galeckas, N. Elfström, A. R. Wilkinson, R. G. Elliman, and J. Linnros, Appl. Phys. Lett. 89, 111124 (2006).
[CrossRef]

Opt. Express

Phys. Rev.

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. B

R. Amos and W. L. Barnes, Phys. Rev. B 55, 7249 (1997).
[CrossRef]

Phys. Rev. Lett.

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).
[CrossRef] [PubMed]

H. Htoon, M. J. O'Connel, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004).
[CrossRef] [PubMed]

Other

N. J. Turro, Modern Molecular Photochemistry (Benjamin/Cummings, 1978), p. 298.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), p. 509.

D. W. Dearholt and W. R. McSpadden, Electromagnetic Wave Propagation (McGraw-Hill, 1973), p. 402.

H. L. Anderson, A Physicist's Desk Reference (American Institute of Physics, 1981), p. 272.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, Appl. Surf. Sci. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) Schematic representation of the interface effect on the emitter radiative rate. (a) For a pointlike emitter located at the air–semiconductor interface the radiative rate is higher than (b) for the one located at the air–silica interface. (c), (d) Electric field z-component distribution for TE-polarized light with free-space wavelength λ 0 = 800 nm , emitted from a single emitter located at the (c) air–semiconductor and (d) air–silica interfaces.

Fig. 2
Fig. 2

Fraction of total power emitted to the (a) upper and (b) lower half-space as a function of lower half-space refractive index for several values of the emitter intrinsic quantum efficiency QE 0 : 25%, 50%, 75%, and 100%. Inset, the ratio of total power emitted to the upper and lower half-space as a function of substrate refractive index.

Fig. 3
Fig. 3

Fraction of total power emitted to the (a) upper and (b) lower half-space as a function of the emitter intrinsic quantum efficiency for the common case of silica and semiconductor substrates. The case of isotropic distribution for an emitter suspended in vacuum is shown with a dotted line. Inset, curves for the upper half-space are shown relative to the case of isotropic emission.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

X * X + h ν .
Γ rad = n + 1 2 Γ 0 rad ,
X * X + heat ,
QE = Γ rad Γ rad + Γ n r n + 1 n 1 + 2 QE 0 ,
Δ E + k 0 2 n 2 E = 0 ,
κ , ( n , QE 0 ) = QE ( n , QE 0 ) χ rad , ( n ) .

Metrics