Abstract

We present a theoretical study of the dispersion relation of surface-plasmon resonances of mesoscopic metal-dielectric-metal microspheres. By analyzing the solutions to Maxwell's equations, we obtain a simple geometric condition for which the system exhibits a band of surface-plasmon modes whose resonant frequencies are weakly dependent on the multipole number. Using a modified Mie calculation, we find that a large number of modes belonging to this flat-dispersion band can be excited simultaneously by a plane wave, thus enhancing the absorption cross section. We demonstrate that the enhanced absorption peak of the sphere is geometrically tunable over the entire visible range.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription