Abstract

A surface-wave sensor based on the resonant transmission characteristics of metal hole arrays is demonstrated in the terahertz (THz) region. Since the frequency of the transmission peak of a metal hole array, which corresponds to the resonant frequency of the surface waves, is particularly sensitive to the refractive index in the vicinity of the metal surface, a very small change in the substances attached to the surface can be detected by monitoring the transmission spectrum. By attaching a layer of substance (thickness t<5μm) much thinner than the wavelength of the THz wave (λTHz=1mm at 0.3THz) to the surface of a metal hole array, we demonstrated that the existence of such a small amount of substance can be detected more easily than without the metal hole array. This demonstration of THz sensing with metal hole arrays indicates the possibility of realizing THz surface-wave sensors for biochemical molecules in the THz region.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. Lett. 67, 379 (1998).
  2. M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 86, 53903 (2005).
    [CrossRef]
  3. K. Kawase, Y. Ogawa, and Y. Watanabe, Opt. Express 11, 2549 (2003).
    [CrossRef] [PubMed]
  4. K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
    [CrossRef]
  5. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
    [CrossRef]
  6. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
    [CrossRef]
  7. C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, Appl. Phys. Lett. 86, 211119 (2005).
    [CrossRef]
  8. F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742 (2004).
    [CrossRef]
  9. H. Cao and A. Nahata, Opt. Express 12, 1004 (2004).
    [CrossRef] [PubMed]
  10. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
    [CrossRef] [PubMed]
  11. M. Hangyo, T. Nagashima, and S. Nashima, Meas. Sci. Technol. 13, 1727 (2003).
    [CrossRef]
  12. H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  13. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and Eiichi Sano, Opt. Lett. 30, 1210 (2005).
    [CrossRef] [PubMed]
  14. A. Nygaard and B. Hall, Biochem. Biophys. Res. Commun. 12, 98 (1963).
    [CrossRef] [PubMed]
  15. D. Gillespie and S. Spiegelman, J. Mol. Biol. 12, 829 (1965).
    [CrossRef] [PubMed]
  16. F. Miyamaru, M. Tanaka, and M. Hangyo, J. Appl. Phys. 99, 16105 (2006).
    [CrossRef]

2006 (1)

F. Miyamaru, M. Tanaka, and M. Hangyo, J. Appl. Phys. 99, 16105 (2006).
[CrossRef]

2005 (3)

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and Eiichi Sano, Opt. Lett. 30, 1210 (2005).
[CrossRef] [PubMed]

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, Appl. Phys. Lett. 86, 211119 (2005).
[CrossRef]

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 86, 53903 (2005).
[CrossRef]

2004 (4)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742 (2004).
[CrossRef]

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

H. Cao and A. Nahata, Opt. Express 12, 1004 (2004).
[CrossRef] [PubMed]

2003 (2)

K. Kawase, Y. Ogawa, and Y. Watanabe, Opt. Express 11, 2549 (2003).
[CrossRef] [PubMed]

M. Hangyo, T. Nagashima, and S. Nashima, Meas. Sci. Technol. 13, 1727 (2003).
[CrossRef]

2002 (1)

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
[CrossRef]

2000 (1)

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
[CrossRef]

1998 (1)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. Lett. 67, 379 (1998).

1965 (1)

D. Gillespie and S. Spiegelman, J. Mol. Biol. 12, 829 (1965).
[CrossRef] [PubMed]

1963 (1)

A. Nygaard and B. Hall, Biochem. Biophys. Res. Commun. 12, 98 (1963).
[CrossRef] [PubMed]

Akazawa, M.

Baraniuk, R. G.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. Lett. 67, 379 (1998).

Beigang, R.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, Appl. Phys. Lett. 86, 211119 (2005).
[CrossRef]

Bolivar, P. H.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
[CrossRef]

Bosserhoff, A.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
[CrossRef]

Brucherseifer, M.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
[CrossRef]

Büttner, R.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
[CrossRef]

Cao, H.

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Gillespie, D.

D. Gillespie and S. Spiegelman, J. Mol. Biol. 12, 829 (1965).
[CrossRef] [PubMed]

Hall, B.

A. Nygaard and B. Hall, Biochem. Biophys. Res. Commun. 12, 98 (1963).
[CrossRef] [PubMed]

Hangyo, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, J. Appl. Phys. 99, 16105 (2006).
[CrossRef]

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 86, 53903 (2005).
[CrossRef]

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and Eiichi Sano, Opt. Lett. 30, 1210 (2005).
[CrossRef] [PubMed]

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742 (2004).
[CrossRef]

M. Hangyo, T. Nagashima, and S. Nashima, Meas. Sci. Technol. 13, 1727 (2003).
[CrossRef]

Ikeda, T.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. Lett. 67, 379 (1998).

Kawase, K.

Koide, K.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Kurz, H.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
[CrossRef]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Matsushita, A.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Minami, Y.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. Lett. 67, 379 (1998).

Miyamaru, F.

F. Miyamaru, M. Tanaka, and M. Hangyo, J. Appl. Phys. 99, 16105 (2006).
[CrossRef]

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and Eiichi Sano, Opt. Lett. 30, 1210 (2005).
[CrossRef] [PubMed]

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 86, 53903 (2005).
[CrossRef]

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742 (2004).
[CrossRef]

Nagashima, T.

M. Hangyo, T. Nagashima, and S. Nashima, Meas. Sci. Technol. 13, 1727 (2003).
[CrossRef]

Nagel, M.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
[CrossRef]

Nahata, A.

Nashima, S.

M. Hangyo, T. Nagashima, and S. Nashima, Meas. Sci. Technol. 13, 1727 (2003).
[CrossRef]

Neelamani, R.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. Lett. 67, 379 (1998).

Nerkararyan, Kh.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, Appl. Phys. Lett. 86, 211119 (2005).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. Lett. 67, 379 (1998).

Nygaard, A.

A. Nygaard and B. Hall, Biochem. Biophys. Res. Commun. 12, 98 (1963).
[CrossRef] [PubMed]

Ogawa, Y.

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Rau, C.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, Appl. Phys. Lett. 86, 211119 (2005).
[CrossRef]

Reather, H.

H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Sano, Eiichi

Spiegelman, S.

D. Gillespie and S. Spiegelman, J. Mol. Biol. 12, 829 (1965).
[CrossRef] [PubMed]

Tanaka, M.

Tanaka, T.

Tani, M.

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 86, 53903 (2005).
[CrossRef]

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Tatsuno, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Torosyan, G.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, Appl. Phys. Lett. 86, 211119 (2005).
[CrossRef]

Watanabe, Y.

Yamaguchi, M.

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 86, 53903 (2005).
[CrossRef]

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Yamamoto, K.

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 86, 53903 (2005).
[CrossRef]

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Appl. Phys. Lett. (6)

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
[CrossRef]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).
[CrossRef]

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, Appl. Phys. Lett. 86, 211119 (2005).
[CrossRef]

F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742 (2004).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. Lett. 67, 379 (1998).

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 86, 53903 (2005).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

A. Nygaard and B. Hall, Biochem. Biophys. Res. Commun. 12, 98 (1963).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

F. Miyamaru, M. Tanaka, and M. Hangyo, J. Appl. Phys. 99, 16105 (2006).
[CrossRef]

J. Mol. Biol. (1)

D. Gillespie and S. Spiegelman, J. Mol. Biol. 12, 829 (1965).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. Part 2 (1)

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys. Part 2 43, L414 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

M. Hangyo, T. Nagashima, and S. Nashima, Meas. Sci. Technol. 13, 1727 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Other (1)

H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Measured normalized transmission spectra of the metal hole array with clear paper (dashed curve) and printed paper (solid curve) attached to it. The inset shows the measured transmission spectrum of a bare metal hole array. (b) Differential transmission spectra of the clear paper and printed paper, with the metal hole array (circles) and without (squares). MHA, metal hole array.

Fig. 2
Fig. 2

(a) Measured transmission spectra of the glycerin-impregnated nylon membrane attached to the metal hole array for some glycerin volumes. The inset shows the peak frequency obtained from the result of the numerical fitting as a function of the glycerin volume. (b) Normalized transmittance of the glycerin-impregnated nylon membrane measured with the metal hole array (circles) at peak frequency and without (squares) at 0.285 THz .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f SW = k in + G c 2 π { ( ϵ m + ϵ d ) ϵ m ϵ d } 1 2 ,

Metrics