Abstract

We present a comparative experimental phantom study of fiber-based and noncontact fluorescence tomography with respect to quantitation and localization of reconstructed fluorescent inclusions in turbid media such as tissue. Noncontact acquisition is usually considered potentially superior to fiber-based techniques because of the availability of a large number of detector readouts through a CCD. Our results indicate, however, that noncontact acquisition itself might improve the quality of reconstructions significantly, even without increasing the number of detectors and thus keeping the inverse problem moderately complex.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, Molecular Imaging 1, 82 (2005).
    [CrossRef]
  2. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
    [CrossRef] [PubMed]
  3. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
    [CrossRef] [PubMed]
  4. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
    [CrossRef] [PubMed]
  5. J. Ripoll, R. B. Schulz, and V. Ntziachristos, Phys. Rev. Lett. 91, 103901 (2003).
    [CrossRef] [PubMed]
  6. R. B. Schulz, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 23, 492 (2004).
    [CrossRef] [PubMed]
  7. V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
    [CrossRef]
  8. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, Med. Phys. 22, 1779 (1995).
    [CrossRef] [PubMed]

2005 (1)

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, Molecular Imaging 1, 82 (2005).
[CrossRef]

2004 (1)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 23, 492 (2004).
[CrossRef] [PubMed]

2003 (4)

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

2001 (1)

1995 (1)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef] [PubMed]

Arridge, S. R.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, Molecular Imaging 1, 82 (2005).
[CrossRef]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Choe, R.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef] [PubMed]

Durduran, T.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Graves, E. E.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, Molecular Imaging 1, 82 (2005).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef] [PubMed]

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, Molecular Imaging 1, 82 (2005).
[CrossRef]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 23, 492 (2004).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
[CrossRef]

Ripoll, J.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, Molecular Imaging 1, 82 (2005).
[CrossRef]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 23, 492 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

Schulz, R. B.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 23, 492 (2004).
[CrossRef] [PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef] [PubMed]

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, Molecular Imaging 1, 82 (2005).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
[CrossRef]

Yodh, A. G.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 23, 492 (2004).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Med. Phys. (3)

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, Med. Phys. 30, 235 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef] [PubMed]

Molecular Imaging (1)

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, Molecular Imaging 1, 82 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. Ripoll, R. B. Schulz, and V. Ntziachristos, Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used in the experiments. (a) Fiber-based setup, with the laser in the background and fiber mount in the foreground. (b) Noncontact imaging setup. (c) Sketch of the diffuse phantom (length 10 cm , 4 cm , inclusions 4 mm ). In both setups, the phantom is mounted on a rotatable support.

Fig. 2
Fig. 2

Linearity of reconstructed fluorochrome concentrations. Box-whisker plots for (a) fiber-based setup, (b) non-contact setup. Whiskers span the whole range of reconstructed values; boxes show the upper, middle, and lower quartiles.

Fig. 3
Fig. 3

Spatial accuracy of reconstructions. (a) Average distance between centroid of the reconstructed inclusion and actual inclusion center. (b) Average diameter of reconstructed inclusion. The actual diameter was 0.4 cm . Whiskers span the whole range of acquired values; boxes indicate the upper, middle, and lower quartiles.

Fig. 4
Fig. 4

Central transversal slices of reconstructed volumes with intensity profiles along x and y axes. In the horizontal profiles, the dashed line corresponds to the lower inclusion (at y = 1 ). Upper row (a),(b): experiment with 250 nM l dye in both inclusions. Bottom row (c),(d): experiment with 500 nM l dye in the upper inclusion, 63 nM l dye in the lower inclusion. (a),(c) Fiber-based results, (b),(d) non-contact results. Circles indicate the actual shape and position of the inclusions. The color scale was adjusted for each subfigure individually.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U ̃ m ( r d ) U ̃ x ( r d ) = Ω d r m P r r d { G ( r , r m ) } n ( r m ) G ( r m , r s ) P r r d { G ( r , r s ) } ,
u i = P Ω D i { U ( r ) } = D d r d φ i ( r d ) U ( h 1 ( r d ) ) Γ h ( r d ) ,

Metrics