Abstract

In this work we report the advantages provided by two photon excitation (2PE) implemented in a selective plane illumination microscopy (SPIM) when imaging thick scattering samples. In particular, a detailed analysis of the effects induced on the real light sheet excitation intensity distribution is performed. The comparison between single-photon and two-photon excitation profiles shows the reduction of the scattering effects and sample-induced aberrations provided by 2PE-SPIM. Furthermore, uniformity of the excitation distribution and the consequent improved image contrast is shown when imaging scattering phantom samples in depth by 2PE-SPIM. These results show the advantages of 2PE-SPIM and suggest how this combination can further enhance the SPIM performance. Phantom samples have been designed with optical properties compatible with biological applications of interest.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
    [CrossRef] [PubMed]
  2. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
    [PubMed]
  3. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
    [CrossRef] [PubMed]
  4. M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J.100(8), L43–L45 (2011).
    [CrossRef] [PubMed]
  5. F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
    [CrossRef] [PubMed]
  6. C. J. Sheppard and T. Wilson, “Depth of field in the scanning microscope,” Opt. Lett.3(3), 115–117 (1978).
    [CrossRef] [PubMed]
  7. A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett.34(19), 3041–3043 (2009).
    [CrossRef] [PubMed]
  8. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods7(8), 603–614 (2010).
    [CrossRef] [PubMed]
  9. J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett.32(17), 2608–2610 (2007).
    [CrossRef] [PubMed]
  10. R. Tomer, K. Khairy, F. Amat, and P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods9(7), 755–763 (2012).
    [CrossRef] [PubMed]
  11. U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012).
    [CrossRef] [PubMed]
  12. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
    [CrossRef] [PubMed]
  13. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4(11), 780–785 (2010).
    [CrossRef]
  14. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  15. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence exitation and related thechniques in biological microscopy,” Q. Rev. Biophys.15, 1–70 (2006).
  16. J. Palero, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “A simple scanless two-photon fluorescence microscope using selective plane illumination,” Opt. Express18(8), 8491–8498 (2010).
    [CrossRef] [PubMed]
  17. F. Cella Zanacchi, Z. Lavagnino, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE7903, 7903–7906 (2011).
    [CrossRef]
  18. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011).
    [CrossRef] [PubMed]
  19. W. Supatto, T. V. Truong, D. De’ Barrel, and E. Beaurepair “Advances in multiphoton microscopy for imaging embryos” Curr Opinion Gen. Dev (21) 538–548 (2011)
  20. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A23(12), 3139–3149 (2006).
    [CrossRef] [PubMed]
  21. K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78(2), 023705 (2007).
    [CrossRef] [PubMed]
  22. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
    [CrossRef] [PubMed]
  23. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37(16), 3586–3593 (1998).
    [CrossRef] [PubMed]
  24. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
    [CrossRef]
  25. S. Prahl, Mie Scattering Calculator, http://omlc.ogi.edu/calc/mie_calc.html
  26. J. Debnath, S. K. Muthuswamy, and J. S. Brugge, “Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures,” Methods30(3), 256–268 (2003).
    [CrossRef] [PubMed]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley & Sons, 1991), Chap. 3.
  28. J. G. Ritter, R. Veith, J.-P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express16(10), 7142–7152 (2008).
    [CrossRef] [PubMed]
  29. J. Ying, F. Liu, and R. R. Alfano, “Spatial distribution of two-photon-excited fluorescence in scattering media,” Appl. Opt.38(1), 224–229 (1999).
    [CrossRef] [PubMed]
  30. P. F. Mullaney and P. N. Dean, “The small angle light scattering of biological cells. Theoretical considerations,” Biophys. J.10(8), 764–772 (1970).
    [CrossRef] [PubMed]
  31. J. Ying, F. Liu, and R. R. Alfano, “Effect of scattering on nonlinear optical scanning microscopy imaging of highly scattering media,” Appl. Opt.39(4), 509–514 (2000).
    [CrossRef] [PubMed]
  32. C. J. Engelbrecht and E. H. K. Stelzer. “Resolution enhancement in a light-sheet-based microscope (SPIM).” Opt Lett. 10, 1477–1479 (2006)
  33. J. T. Bushberg, J. A. Seibert, E. M. Leidholt, Jr., and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2006) Chap. 10.

2012 (2)

R. Tomer, K. Khairy, F. Amat, and P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods9(7), 755–763 (2012).
[CrossRef] [PubMed]

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012).
[CrossRef] [PubMed]

2011 (6)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J.100(8), L43–L45 (2011).
[CrossRef] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE7903, 7903–7906 (2011).
[CrossRef]

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011).
[CrossRef] [PubMed]

W. Supatto, T. V. Truong, D. De’ Barrel, and E. Beaurepair “Advances in multiphoton microscopy for imaging embryos” Curr Opinion Gen. Dev (21) 538–548 (2011)

2010 (4)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods7(8), 603–614 (2010).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4(11), 780–785 (2010).
[CrossRef]

J. Palero, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “A simple scanless two-photon fluorescence microscope using selective plane illumination,” Opt. Express18(8), 8491–8498 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (3)

J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett.32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
[PubMed]

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78(2), 023705 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence exitation and related thechniques in biological microscopy,” Q. Rev. Biophys.15, 1–70 (2006).

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A23(12), 3139–3149 (2006).
[CrossRef] [PubMed]

C. J. Engelbrecht and E. H. K. Stelzer. “Resolution enhancement in a light-sheet-based microscope (SPIM).” Opt Lett. 10, 1477–1479 (2006)

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

2003 (1)

J. Debnath, S. K. Muthuswamy, and J. S. Brugge, “Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures,” Methods30(3), 256–268 (2003).
[CrossRef] [PubMed]

2002 (1)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1998 (1)

1990 (2)

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1978 (1)

1970 (1)

P. F. Mullaney and P. N. Dean, “The small angle light scattering of biological cells. Theoretical considerations,” Biophys. J.10(8), 764–772 (1970).
[CrossRef] [PubMed]

Alfano, R. R.

Amat, F.

R. Tomer, K. Khairy, F. Amat, and P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods9(7), 755–763 (2012).
[CrossRef] [PubMed]

Artigas, D.

Bao, Z.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

Beaurepair, E.

W. Supatto, T. V. Truong, D. De’ Barrel, and E. Beaurepair “Advances in multiphoton microscopy for imaging embryos” Curr Opinion Gen. Dev (21) 538–548 (2011)

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Brugge, J. S.

J. Debnath, S. K. Muthuswamy, and J. S. Brugge, “Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures,” Methods30(3), 256–268 (2003).
[CrossRef] [PubMed]

Cella Zanacchi, F.

F. Cella Zanacchi, Z. Lavagnino, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE7903, 7903–7906 (2011).
[CrossRef]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Cheong, W.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Chirico, G.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence exitation and related thechniques in biological microscopy,” Q. Rev. Biophys.15, 1–70 (2006).

Choi, J. M.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011).
[CrossRef] [PubMed]

Collini, M.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence exitation and related thechniques in biological microscopy,” Q. Rev. Biophys.15, 1–70 (2006).

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

De’ Barrel, D.

W. Supatto, T. V. Truong, D. De’ Barrel, and E. Beaurepair “Advances in multiphoton microscopy for imaging embryos” Curr Opinion Gen. Dev (21) 538–548 (2011)

Dean, P. N.

P. F. Mullaney and P. N. Dean, “The small angle light scattering of biological cells. Theoretical considerations,” Biophys. J.10(8), 764–772 (1970).
[CrossRef] [PubMed]

Debnath, J.

J. Debnath, S. K. Muthuswamy, and J. S. Brugge, “Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures,” Methods30(3), 256–268 (2003).
[CrossRef] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Del Bue, A.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Denk, W.

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A23(12), 3139–3149 (2006).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Diaspro, A.

F. Cella Zanacchi, Z. Lavagnino, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE7903, 7903–7906 (2011).
[CrossRef]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence exitation and related thechniques in biological microscopy,” Q. Rev. Biophys.15, 1–70 (2006).

Eick, A. A.

Engelbrecht, C. J.

C. J. Engelbrecht and E. H. K. Stelzer. “Resolution enhancement in a light-sheet-based microscope (SPIM).” Opt Lett. 10, 1477–1479 (2006)

Ermolayev, V.

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J.100(8), L43–L45 (2011).
[CrossRef] [PubMed]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4(11), 780–785 (2010).
[CrossRef]

Faretta, M.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Fraser, S. E.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011).
[CrossRef] [PubMed]

Freyer, J. P.

Friedrich, M.

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J.100(8), L43–L45 (2011).
[CrossRef] [PubMed]

Furia, L.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Gan, Q.

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J.100(8), L43–L45 (2011).
[CrossRef] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Greger, K.

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78(2), 023705 (2007).
[CrossRef] [PubMed]

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
[PubMed]

Gunther, S.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012).
[CrossRef] [PubMed]

Harms, G. S.

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J.100(8), L43–L45 (2011).
[CrossRef] [PubMed]

Hielscher, A. H.

Hufnagel, L.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012).
[CrossRef] [PubMed]

Huisken, J.

J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett.32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Johnson, T. M.

Keller, P. J.

R. Tomer, K. Khairy, F. Amat, and P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods9(7), 755–763 (2012).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

Khairy, K.

R. Tomer, K. Khairy, F. Amat, and P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods9(7), 755–763 (2012).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

Koos, D. S.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011).
[CrossRef] [PubMed]

Krzic, U.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012).
[CrossRef] [PubMed]

Kubitscheck, U.

Lavagnino, Z.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE7903, 7903–7906 (2011).
[CrossRef]

Liu, F.

Loza-Alvarez, P.

Marcello, M.

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
[PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Mourant, J. R.

Mullaney, P. F.

P. F. Mullaney and P. N. Dean, “The small angle light scattering of biological cells. Theoretical considerations,” Biophys. J.10(8), 764–772 (1970).
[CrossRef] [PubMed]

Muthuswamy, S. K.

J. Debnath, S. K. Muthuswamy, and J. S. Brugge, “Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures,” Methods30(3), 256–268 (2003).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods7(8), 603–614 (2010).
[CrossRef] [PubMed]

Palero, J.

Pampaloni, F.

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
[PubMed]

Perrone Donnorso, M.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Prahl, S.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Ritter, J. G.

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4(11), 780–785 (2010).
[CrossRef]

A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett.34(19), 3041–3043 (2009).
[CrossRef] [PubMed]

Ronzitti, E.

F. Cella Zanacchi, Z. Lavagnino, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE7903, 7903–7906 (2011).
[CrossRef]

Santella, A.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

Santos, S. I. C. O.

Saunders, T. E.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012).
[CrossRef] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Schwarzmaier, H. J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Shen, D.

Sheppard, C. J.

Siebrasse, J.-P.

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4(11), 780–785 (2010).
[CrossRef]

Stainier, D. Y.

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
[PubMed]

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78(2), 023705 (2007).
[CrossRef] [PubMed]

C. J. Engelbrecht and E. H. K. Stelzer. “Resolution enhancement in a light-sheet-based microscope (SPIM).” Opt Lett. 10, 1477–1479 (2006)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Streichan, S. J.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Supatto, W.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011).
[CrossRef] [PubMed]

W. Supatto, T. V. Truong, D. De’ Barrel, and E. Beaurepair “Advances in multiphoton microscopy for imaging embryos” Curr Opinion Gen. Dev (21) 538–548 (2011)

Swoger, J.

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78(2), 023705 (2007).
[CrossRef] [PubMed]

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
[PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Theer, P.

Tomer, R.

R. Tomer, K. Khairy, F. Amat, and P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods9(7), 755–763 (2012).
[CrossRef] [PubMed]

Truong, T. V.

W. Supatto, T. V. Truong, D. De’ Barrel, and E. Beaurepair “Advances in multiphoton microscopy for imaging embryos” Curr Opinion Gen. Dev (21) 538–548 (2011)

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011).
[CrossRef] [PubMed]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Veith, R.

Verveer, P. J.

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
[PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Welch, A.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Wilson, T.

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Ying, J.

Appl. Opt. (3)

Biophys. J. (2)

P. F. Mullaney and P. N. Dean, “The small angle light scattering of biological cells. Theoretical considerations,” Biophys. J.10(8), 764–772 (1970).
[CrossRef] [PubMed]

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J.100(8), L43–L45 (2011).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Methods (1)

J. Debnath, S. K. Muthuswamy, and J. S. Brugge, “Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures,” Methods30(3), 256–268 (2003).
[CrossRef] [PubMed]

Nat. Methods (8)

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011).
[CrossRef] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007).
[PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).
[CrossRef] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods7(8), 603–614 (2010).
[CrossRef] [PubMed]

R. Tomer, K. Khairy, F. Amat, and P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods9(7), 755–763 (2012).
[CrossRef] [PubMed]

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4(11), 780–785 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Med. Biol. (1)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

F. Cella Zanacchi, Z. Lavagnino, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE7903, 7903–7906 (2011).
[CrossRef]

Q. Rev. Biophys. (1)

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence exitation and related thechniques in biological microscopy,” Q. Rev. Biophys.15, 1–70 (2006).

Rev. Sci. Instrum. (1)

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78(2), 023705 (2007).
[CrossRef] [PubMed]

Science (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (5)

W. Supatto, T. V. Truong, D. De’ Barrel, and E. Beaurepair “Advances in multiphoton microscopy for imaging embryos” Curr Opinion Gen. Dev (21) 538–548 (2011)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley & Sons, 1991), Chap. 3.

S. Prahl, Mie Scattering Calculator, http://omlc.ogi.edu/calc/mie_calc.html

C. J. Engelbrecht and E. H. K. Stelzer. “Resolution enhancement in a light-sheet-based microscope (SPIM).” Opt Lett. 10, 1477–1479 (2006)

J. T. Bushberg, J. A. Seibert, E. M. Leidholt, Jr., and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2006) Chap. 10.

Supplementary Material (1)

» Media 1: AVI (394 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the Selective Plane Illumination Microscope (A) adapted from [5]. Figure B and fig. C show the adaptation of the system for the experimental measurements. With the cylindrical lens in its standard position, a light sheet is produced in the focus of the objective lens, and a homogeneous fluorescent image of the phantom sample is produced on the CCD Camera (B). Rotating the cylindrical lens by 90 degrees, the axial section of the intensity excitation distribution appears on the CCD sensor.

Fig. 2
Fig. 2

Experiments performed on various phantom samples mimicking the different optical properties of biological tissues (5, 10, 30, 50 mm−1 respectively), considering the intensity excitation profile in the direction of propagation. Schematic representation (A-C) of the peak shift (green dot) of the excitation intensity distribution for single photon excitation (blue) and two-photon (red) excitation configurations. The arrows underline how the peak tends to shift back from the ideal case. While keeping constant the travel within the sample in the detection path (150μm) and varying both illumination depth and the scattering properties of the phantom sample, we were able to measure a significant shift for the single photon excitation configuration with respect to the two-photon configuration. D shows an example of the axial section of the measured intensity excitation distributions for the 1P and 2P excitation lightsheets for a phantom sample with 5 mm−1 scattering coefficient at 400 μm illumination depth. E shows the relative peak position of the uniform region with respect to the supposed focus (in a non-scattering sample) for single photon excitation at different illumination depths (400,600 and 800μm deep within the sample) while increasing the scattering coefficient of the phantom sample. 2PE allows the shift of the uniform region to be reduced. Excitation Wavelengths: λ = 488 nm (1P) and λ = 790 nm (2P) Intensity used in 1P experiments: I = 0.13 kW/cm2; Intensity used in 2P experiments: I = 19.78 kW/cm2. Detection Objective: Leica 20x, NA 0.5.

Fig. 3
Fig. 3

Images of different homogeneously scattering phantom samples with fluorescent beads (diameter = 0.17 μm) by means of single photon and two-photon excitation SPIM. Increasing the scattering coefficient within the sample, it is possible to appreciate how signal to noise ratio in 2PE-SPIM degrades much less in comparison to the single photon case. All images are acquired at 600 μm illumination depth within the samples. Scale bar is 5 μm. Detection objective Leica HCX APO L U-V-I 12 40X, NA 0.8.Additional magnification introduced:2,5X to get a total magnification of 100X. Intensity used in single photon experiments: I = 0.11 kW/cm2; intensity used in 2P experiments: I = 19.23 kW/cm2

Fig. 4
Fig. 4

Z-stack of mammary epithelial acini (zstep 1 µm) has been acquired (see Suppl. Media 1). Only representative planes within the cell spheroids (spaced 3μm) are shown (A). Scale bar: 10 µm . Maximum intensity projection of the entire volume (B). Excitation wavelength λ = 750nm, I = 54.94 KW/cm2. Objective lens: HCX APO L U-V-I 40x/0.8 WATER.

Tables (2)

Tables Icon

Table 1 Summary of the values obtained from the relative shift of the excitation intensity distributions peaks for both excitation schemes. Scattering coefficient is 50 mm−1.

Tables Icon

Table 2 Summary of the dimensions of the uniform intensity region within the exciting light sheet. The data shown are the mean values of 15 measurements made on calibrated samples. In the single photon excitation configuration, the area of uniformity reduces significantly by approximately 40 microns, while in the two photon excitation configuration there is no significant variation. This means that the two photon excitation light sheet is preserved more while travelling in deep scattering samples. Data refer to an illumination depth of 400μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 1P (x,y,z)= I 0 (x) e ( y 2 2 σ y 2 z 2 2 σ z 2 ) e μ s x
I 2P (x,y,z) I 0 2 (x) e ( y 2 σ y 2 z 2 σ z 2 ) e 2 μ s x

Metrics