Abstract

Nanoantennas are key optical components for several applications including photodetection and biosensing. Here we present an array of metal nano-dipoles supporting surface plasmon polaritons (SPPs) integrated into a silicon-based Schottky-contact photodetector. Incident photons coupled to the array excite SPPs on the Au nanowires of the antennas which decay by creating ”hot” carriers in the metal. The hot carriers may then be injected over the potential barrier at the Au-Si interface resulting in a photocurrent. High responsivities of 100 mA/W and practical minimum detectable powers of −12 dBm should be achievable in the infra-red (1310 nm). The device was then investigated for use as a biosensor by computing its bulk and surface sensitivities. Sensitivities of ∼ 250 nm/RIU (bulk) and ∼ 8 nm/nm (surface) in water are predicted. We identify the mode propagating and resonating along the nanowires of the antennas, we apply a transmission line model to describe the performance of the antennas, and we extract two useful formulas to predict their bulk and surface sensitivities. We prove that the sensitivities of dipoles are much greater than those of similar monopoles and we show that this difference comes from the gap in dipole antennas where electric fields are strongly enhanced.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), 1st ed.
  2. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
    [Crossref] [PubMed]
  3. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [Crossref]
  4. S. S. Mousavi, P. Berini, and D. McNamara, “Periodic plasmonic nanoantennas in a piecewise homogeneous background,” Opt. Express 20, 18044–18065 (2012).
    [Crossref] [PubMed]
  5. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New Journal of Physics 10, 105010 (2008).
    [Crossref]
  6. F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
    [Crossref]
  7. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied Physics Letters 98, 153108 (2011).
    [Crossref] [PubMed]
  8. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat Photon 1, 641–648 (2007).
    [Crossref]
  9. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [Crossref]
  10. E. M. Larsson, J. Alegret, M. Kll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Letters 7, 1256–1263 (2007).
    [Crossref] [PubMed]
  11. G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Applied Physics Letters 41, 906–908 (1982).
    [Crossref]
  12. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Letters 6, 683–688 (2006).
    [Crossref] [PubMed]
  13. M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express 19, 9213–9220 (2011).
    [Crossref] [PubMed]
  14. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref] [PubMed]
  15. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006). PMID: .
    [Crossref] [PubMed]
  16. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” The Journal of Physical Chemistry B 109, 21556–21565 (2005).
    [Crossref]
  17. F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics 26, 1131 – 1136 (2010).
    [Crossref] [PubMed]
  18. L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express 19, 9962–9967 (2011).
    [Crossref] [PubMed]
  19. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
    [Crossref]
  20. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon fabry-perot photode-tectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20, 12599–12609 (2012).
    [Crossref] [PubMed]
  21. S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Applied Physics Letters 46, 915–917 (1985).
    [Crossref]
  22. C. Daboo, M. Baird, H. H. N. Apsley, and M. Emeny, “Improved surface plasmon enhanced photodetection at an augaas schottky junction using a novel molecular beam epitaxy grown otto coupling structure,” Thin Solid Films 201, 9 – 27 (1991).
    [Crossref]
  23. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express 18, 8505–8514 (2010).
    [Crossref] [PubMed]
  24. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19, 15843–15854 (2011).
    [Crossref] [PubMed]
  25. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters 11, 2219–2224 (2011).
    [Crossref] [PubMed]
  26. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat Nano 6, 588–593 (2011).
    [Crossref]
  27. J. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-ghz rectenna,” Microwave Theory and Techniques, IEEE Transactions on 46, 2053 –2060 (1998).
    [Crossref]
  28. FDTD Solutions (Lumerical Solutions Inc.).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  30. D. J. Segelstein, “The complex refractive index of water,” Master’s thesis, University of Missouri, Kansas City, Missouri, USA (1981).
  31. R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electronics, IEEE Journal of 23, 123 – 129 (1987).
    [Crossref]
  32. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004).
    [Crossref]
  33. C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” Quantum Electronics, IEEE Journal of 46, 633 –643 (2010).
    [Crossref]
  34. R. N. Stuart, F. Wooten, and W. E. Spicer, “Mean free path of hot electrons and holes in metals,” Phys. Rev. Lett. 10, 119–119 (1963).
    [Crossref]
  35. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006), 3rd ed.
    [Crossref]
  36. A. Akbari, A. Olivieri, and P. Berini, “Sub-bandgap asymmetric surface plasmon waveguide schottky detectors on silicon,” Accepted for publication in Sel. Top. Quantum Electronics, IEEE Journal of (2013).
  37. S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor,” J. Opt. Soc. Am. A 29, 994–1002 (2012).
    [Crossref]
  38. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews 108, 462–493 (2008). PMID: .
    [Crossref] [PubMed]
  39. V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Optical and Quantum Electronics 32, 899–908 (2000).
    [Crossref]
  40. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
    [Crossref]
  41. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961), 1st ed.

2012 (4)

2011 (8)

L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express 19, 9962–9967 (2011).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19, 15843–15854 (2011).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters 11, 2219–2224 (2011).
[Crossref] [PubMed]

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat Nano 6, 588–593 (2011).
[Crossref]

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied Physics Letters 98, 153108 (2011).
[Crossref] [PubMed]

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

2010 (3)

F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics 26, 1131 – 1136 (2010).
[Crossref] [PubMed]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express 18, 8505–8514 (2010).
[Crossref] [PubMed]

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” Quantum Electronics, IEEE Journal of 46, 633 –643 (2010).
[Crossref]

2008 (3)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews 108, 462–493 (2008). PMID: .
[Crossref] [PubMed]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New Journal of Physics 10, 105010 (2008).
[Crossref]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat Photon 1, 641–648 (2007).
[Crossref]

E. M. Larsson, J. Alegret, M. Kll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Letters 7, 1256–1263 (2007).
[Crossref] [PubMed]

2006 (2)

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Letters 6, 683–688 (2006).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006). PMID: .
[Crossref] [PubMed]

2005 (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” The Journal of Physical Chemistry B 109, 21556–21565 (2005).
[Crossref]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004).
[Crossref]

2000 (2)

V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Optical and Quantum Electronics 32, 899–908 (2000).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[Crossref]

1998 (1)

J. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-ghz rectenna,” Microwave Theory and Techniques, IEEE Transactions on 46, 2053 –2060 (1998).
[Crossref]

1996 (2)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

1991 (1)

C. Daboo, M. Baird, H. H. N. Apsley, and M. Emeny, “Improved surface plasmon enhanced photodetection at an augaas schottky junction using a novel molecular beam epitaxy grown otto coupling structure,” Thin Solid Films 201, 9 – 27 (1991).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electronics, IEEE Journal of 23, 123 – 129 (1987).
[Crossref]

1985 (1)

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Applied Physics Letters 46, 915–917 (1985).
[Crossref]

1982 (1)

G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Applied Physics Letters 41, 906–908 (1982).
[Crossref]

1963 (1)

R. N. Stuart, F. Wooten, and W. E. Spicer, “Mean free path of hot electrons and holes in metals,” Phys. Rev. Lett. 10, 119–119 (1963).
[Crossref]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
[Crossref]

Akbari, A.

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express 18, 8505–8514 (2010).
[Crossref] [PubMed]

A. Akbari, A. Olivieri, and P. Berini, “Sub-bandgap asymmetric surface plasmon waveguide schottky detectors on silicon,” Accepted for publication in Sel. Top. Quantum Electronics, IEEE Journal of (2013).

Alegret, J.

E. M. Larsson, J. Alegret, M. Kll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Letters 7, 1256–1263 (2007).
[Crossref] [PubMed]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
[Crossref]

An, K. H.

Apsley, H. H. N.

C. Daboo, M. Baird, H. H. N. Apsley, and M. Emeny, “Improved surface plasmon enhanced photodetection at an augaas schottky junction using a novel molecular beam epitaxy grown otto coupling structure,” Thin Solid Films 201, 9 – 27 (1991).
[Crossref]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
[Crossref]

Baird, M.

C. Daboo, M. Baird, H. H. N. Apsley, and M. Emeny, “Improved surface plasmon enhanced photodetection at an augaas schottky junction using a novel molecular beam epitaxy grown otto coupling structure,” Thin Solid Films 201, 9 – 27 (1991).
[Crossref]

Barnard, E. S.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat Nano 6, 588–593 (2011).
[Crossref]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electronics, IEEE Journal of 23, 123 – 129 (1987).
[Crossref]

Berini, P.

S. S. Mousavi, P. Berini, and D. McNamara, “Periodic plasmonic nanoantennas in a piecewise homogeneous background,” Opt. Express 20, 18044–18065 (2012).
[Crossref] [PubMed]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express 18, 8505–8514 (2010).
[Crossref] [PubMed]

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” Quantum Electronics, IEEE Journal of 46, 633 –643 (2010).
[Crossref]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New Journal of Physics 10, 105010 (2008).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[Crossref]

A. Akbari, A. Olivieri, and P. Berini, “Sub-bandgap asymmetric surface plasmon waveguide schottky detectors on silicon,” Accepted for publication in Sel. Top. Quantum Electronics, IEEE Journal of (2013).

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Blanchard-Dionne, A.-P.

Bogdanova, M.

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006). PMID: .
[Crossref] [PubMed]

Brioude, V.

V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Optical and Quantum Electronics 32, 899–908 (2000).
[Crossref]

Brongersma, M. L.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat Nano 6, 588–593 (2011).
[Crossref]

Brueck, S. R. J.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Applied Physics Letters 46, 915–917 (1985).
[Crossref]

Burke, J. J.

G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Applied Physics Letters 41, 906–908 (1982).
[Crossref]

Casalino, M.

Chang, K.

J. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-ghz rectenna,” Microwave Theory and Techniques, IEEE Transactions on 46, 2053 –2060 (1998).
[Crossref]

Coppola, G.

Daboo, C.

C. Daboo, M. Baird, H. H. N. Apsley, and M. Emeny, “Improved surface plasmon enhanced photodetection at an augaas schottky junction using a novel molecular beam epitaxy grown otto coupling structure,” Thin Solid Films 201, 9 – 27 (1991).
[Crossref]

Deinega, A.

Desiatov, B.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters 11, 2219–2224 (2011).
[Crossref] [PubMed]

Diadiuk, V.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Applied Physics Letters 46, 915–917 (1985).
[Crossref]

Emeny, M.

C. Daboo, M. Baird, H. H. N. Apsley, and M. Emeny, “Improved surface plasmon enhanced photodetection at an augaas schottky junction using a novel molecular beam epitaxy grown otto coupling structure,” Thin Solid Films 201, 9 – 27 (1991).
[Crossref]

Fan, L.

J. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-ghz rectenna,” Microwave Theory and Techniques, IEEE Transactions on 46, 2053 –2060 (1998).
[Crossref]

Galler, N.

Goykhman, I.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters 11, 2219–2224 (2011).
[Crossref] [PubMed]

Guyot, L.

Hafner, J. H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Letters 6, 683–688 (2006).
[Crossref] [PubMed]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat Photon 1, 641–648 (2007).
[Crossref]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006). PMID: .
[Crossref] [PubMed]

Hall, D. G.

G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Applied Physics Letters 41, 906–908 (1982).
[Crossref]

Hall, W. P.

Harrington, R. F.

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961), 1st ed.

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Hgglund, C.

F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics 26, 1131 – 1136 (2010).
[Crossref] [PubMed]

Hk, F.

F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics 26, 1131 – 1136 (2010).
[Crossref] [PubMed]

Homola, J.

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews 108, 462–493 (2008). PMID: .
[Crossref] [PubMed]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Iodice, M.

Jones, T.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Applied Physics Letters 46, 915–917 (1985).
[Crossref]

Jonsson, M. P.

F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics 26, 1131 – 1136 (2010).
[Crossref] [PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
[Crossref]

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters 11, 2219–2224 (2011).
[Crossref] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Kll, M.

E. M. Larsson, J. Alegret, M. Kll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Letters 7, 1256–1263 (2007).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

Krenn, J. R.

Kvasnicka, P.

Kwong, D. L.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat Photon 1, 641–648 (2007).
[Crossref]

Larsson, E. M.

E. M. Larsson, J. Alegret, M. Kll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Letters 7, 1256–1263 (2007).
[Crossref] [PubMed]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” The Journal of Physical Chemistry B 109, 21556–21565 (2005).
[Crossref]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006). PMID: .
[Crossref] [PubMed]

Lee, P.-T.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied Physics Letters 98, 153108 (2011).
[Crossref] [PubMed]

Lenth, W.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Applied Physics Letters 46, 915–917 (1985).
[Crossref]

Levy, U.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters 11, 2219–2224 (2011).
[Crossref] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004).
[Crossref]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Letters 6, 683–688 (2006).
[Crossref] [PubMed]

Lin, J.-W.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied Physics Letters 98, 153108 (2011).
[Crossref] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat Photon 1, 641–648 (2007).
[Crossref]

Lo, G. Q.

Lozovik, Y.

Lu, S.-P.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied Physics Letters 98, 153108 (2011).
[Crossref] [PubMed]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), 1st ed.

Marti, J.

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

Martinez, A.

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

Martinez-Marco, M.

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

Mazzotta, F.

F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics 26, 1131 – 1136 (2010).
[Crossref] [PubMed]

McNamara, D.

McSpadden, J.

J. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-ghz rectenna,” Microwave Theory and Techniques, IEEE Transactions on 46, 2053 –2060 (1998).
[Crossref]

Meunier, M.

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” The Journal of Physical Chemistry B 109, 21556–21565 (2005).
[Crossref]

Mousavi, S. S.

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Letters 6, 683–688 (2006).
[Crossref] [PubMed]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006), 3rd ed.
[Crossref]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006). PMID: .
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004).
[Crossref]

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

Olivieri, A.

A. Akbari, A. Olivieri, and P. Berini, “Sub-bandgap asymmetric surface plasmon waveguide schottky detectors on silicon,” Accepted for publication in Sel. Top. Quantum Electronics, IEEE Journal of (2013).

Ortuno, R.

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004).
[Crossref]

Pala, R. A.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat Nano 6, 588–593 (2011).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Parriaux, O.

V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Optical and Quantum Electronics 32, 899–908 (2000).
[Crossref]

Patskovsky, S.

Piliarik, M.

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

Potyrailo, R. A.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Pris, A. D.

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004).
[Crossref]

Rendina, I.

Rodriguez-Canto, P. J.

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

Rodriguez-Fortuno, F. J.

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

Scales, C.

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” Quantum Electronics, IEEE Journal of 46, 633 –643 (2010).
[Crossref]

Segelstein, D. J.

D. J. Segelstein, “The complex refractive index of water,” Master’s thesis, University of Missouri, Kansas City, Missouri, USA (1981).

Shappir, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters 11, 2219–2224 (2011).
[Crossref] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
[Crossref]

Sirleto, L.

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electronics, IEEE Journal of 23, 123 – 129 (1987).
[Crossref]

Spicer, W. E.

R. N. Stuart, F. Wooten, and W. E. Spicer, “Mean free path of hot electrons and holes in metals,” Phys. Rev. Lett. 10, 119–119 (1963).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Applied Physics Letters 41, 906–908 (1982).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004).
[Crossref]

Stuart, R. N.

R. N. Stuart, F. Wooten, and W. E. Spicer, “Mean free path of hot electrons and holes in metals,” Phys. Rev. Lett. 10, 119–119 (1963).
[Crossref]

Sutherland, D. S.

E. M. Larsson, J. Alegret, M. Kll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Letters 7, 1256–1263 (2007).
[Crossref] [PubMed]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006), 3rd ed.
[Crossref]

Tait, R. N.

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

Tomas-Navarro, B.

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

Tsai, C.-Y.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied Physics Letters 98, 153108 (2011).
[Crossref] [PubMed]

Wang, G.

F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics 26, 1131 – 1136 (2010).
[Crossref] [PubMed]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006). PMID: .
[Crossref] [PubMed]

Wooten, F.

R. N. Stuart, F. Wooten, and W. E. Spicer, “Mean free path of hot electrons and holes in metals,” Phys. Rev. Lett. 10, 119–119 (1963).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
[Crossref]

Zalyubovskiy, S. J.

Zhu, S.

Applied Physics Letters (4)

F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters 98, 133118 (2011).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied Physics Letters 98, 153108 (2011).
[Crossref] [PubMed]

G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Applied Physics Letters 41, 906–908 (1982).
[Crossref]

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Applied Physics Letters 46, 915–917 (1985).
[Crossref]

Biosensors and Bioelectronics (1)

F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics 26, 1131 – 1136 (2010).
[Crossref] [PubMed]

Chemical Reviews (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews 108, 462–493 (2008). PMID: .
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Microwave Theory and Techniques, IEEE Transactions on (1)

J. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-ghz rectenna,” Microwave Theory and Techniques, IEEE Transactions on 46, 2053 –2060 (1998).
[Crossref]

Nano Letters (5)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters 11, 2219–2224 (2011).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004).
[Crossref]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Letters 6, 683–688 (2006).
[Crossref] [PubMed]

E. M. Larsson, J. Alegret, M. Kll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Letters 7, 1256–1263 (2007).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006). PMID: .
[Crossref] [PubMed]

Nat Mater (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater 11, 69–75 (2012).
[Crossref]

Nat Nano (1)

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat Nano 6, 588–593 (2011).
[Crossref]

Nat Photon (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat Photon 1, 641–648 (2007).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon 2, 226–229 (2008).
[Crossref]

New Journal of Physics (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New Journal of Physics 10, 105010 (2008).
[Crossref]

Opt. Express (6)

Optical and Quantum Electronics (1)

V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Optical and Quantum Electronics 32, 899–908 (2000).
[Crossref]

Phys. Rev. B (2)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[Crossref]

Phys. Rev. Lett. (2)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref] [PubMed]

R. N. Stuart, F. Wooten, and W. E. Spicer, “Mean free path of hot electrons and holes in metals,” Phys. Rev. Lett. 10, 119–119 (1963).
[Crossref]

Quantum Electronics, IEEE Journal of (2)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electronics, IEEE Journal of 23, 123 – 129 (1987).
[Crossref]

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” Quantum Electronics, IEEE Journal of 46, 633 –643 (2010).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

The Journal of Physical Chemistry B (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” The Journal of Physical Chemistry B 109, 21556–21565 (2005).
[Crossref]

Thin Solid Films (1)

C. Daboo, M. Baird, H. H. N. Apsley, and M. Emeny, “Improved surface plasmon enhanced photodetection at an augaas schottky junction using a novel molecular beam epitaxy grown otto coupling structure,” Thin Solid Films 201, 9 – 27 (1991).
[Crossref]

Other (7)

FDTD Solutions (Lumerical Solutions Inc.).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

D. J. Segelstein, “The complex refractive index of water,” Master’s thesis, University of Missouri, Kansas City, Missouri, USA (1981).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), 1st ed.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006), 3rd ed.
[Crossref]

A. Akbari, A. Olivieri, and P. Berini, “Sub-bandgap asymmetric surface plasmon waveguide schottky detectors on silicon,” Accepted for publication in Sel. Top. Quantum Electronics, IEEE Journal of (2013).

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961), 1st ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(a) Array of Au dipoles on p-Si on p+-Si covered by H2O. Al Ohmic contacts are located at the bottom of the structure and an Au circular contact pad is connected to all dipole arms via optically non-invasive perpendicular Au interconnects. A plane wave source illuminates the array in the +z-direction from below. (b) Geometry of a unit cell of the array under study (interconnects are shown as well); the dipole is assumed covered by an adlayer of thickness a when the surface sensitivities are computed.

Fig. 2
Fig. 2

Distribution of | E | = | E x | 2 + | E y | 2 + | E z | 2 on xy cross-sectional planes for an Au dipole of dimensions w = 30 nm, t = 30 nm, l = 210 nm, g = 20 nm and p = q = 300 nm (a) 3 nm above the Au/Si interface, (b) 15 nm above the Au/Si interface, and (c) 3 nm above the Au surface in H2O. Computations performed at λ0 = 1353 nm (resonance wavelength).

Fig. 3
Fig. 3

Calculated transmittance (T), reflectance (R), absorptance (A) and electric field enhancement (Een) vs. free space wavelength (λ0).

Fig. 4
Fig. 4

(a) Internal quantum efficiency ( η i t) vs. λ0. (b) Responsivity (Resp) and minimum detectable power (Smin) vs. λ0.

Fig. 5
Fig. 5

(a) Absorptance (A) vs. λ0 for several cover refractive indices nc ranging from 1 to 2.75). (b) Bulk sensitivity (∂λ0r/∂nc - blue) and peak responsivity (Resp,r - red) of the rectenna as a function of nc.

Fig. 6
Fig. 6

Real part of Ez of the s a b 0 mode plotted over the cross-section of a nanowire waveguide (λ0 = 1353 nm) computed using a mode solver. (a) nc = 1 (air) and (b) nc = 2.75.

Fig. 7
Fig. 7

Effective refractive index (neff blue) and mode power attenuation (α - red) of the s a b 0 mode resonating along the dipoles as a function of nc.

Fig. 8
Fig. 8

Gap capacitance Cg (blue) and characteristic impedance Z0 of the s a b 0 mode (red) as a function of nc.

Fig. 9
Fig. 9

(a) Resonant wavelengths computed using the transmission line model and the FDTD method as a function of bulk index nc. (b) Bulk sensitivity computed using the FDTD method (dashed blue), the transmission line model (Eq. (4) - red), and the analytical solution (Eq. (20) - black).

Fig. 10
Fig. 10

(a) Absorptance A vs. λ0 for several adlayer thicknesses (a = 0 to 5 nm); the curves are offset vertically by −0.05 for clarity. (b) Surface sensitivity (∂λ0r/∂a - blue) and peak responsivity (Resp,r - red) as a function of a.

Fig. 11
Fig. 11

Real part of Ez of the s a b 0 mode plotted over the cross-section of a nanowire waveguide (λ0 = 1353 nm) computed using a mode solver. (a) a = 0 (no adlyaer) and (b) a = 5 nm.

Fig. 12
Fig. 12

Effective refractive index (neff blue) and mode power attenuation (α - red) of the s a b 0 mode resonating along the dipoles as a function of a.

Fig. 13
Fig. 13

Schematic of a dipole gap showing three plate capacitances in series.

Fig. 14
Fig. 14

Gap capacitance Cg (blue) and characteristic impedance Z0 of the s a b 0 mode (red) as a function of a.

Fig. 15
Fig. 15

(a) Resonant wavelengths computed using the transmission line model and the FDTD method as a function of adlayer thickness a. (b) Surface sensitivity computed using the FDTD method (dashed blue), the transmission line model (Eq.(4) - red), and the analytical solution (Eq.(29) - black).

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

T ( f ) = S Re ( P m ) . ds S Re ( P s ) . ds
A = 1 T R
R esp = κ A η i t q h ν
tan ( n eff ω 0 r ε 0 μ 0 ( d + δ m ) ) = 2 ω 0 r C g Z 0
ω 0 r = 2 π c 0 λ 0 r
C g = ε c A d g
Z 0 = f ( y , z ) Re [ Z ω ( y , z ) ] d S f ( y , z ) d S
Z ω = k ^ ( E × H * ) ( k ^ × H ) ( k ^ × H * )
f ( x , y ) = | E y ( y , z ) | 2 + | E z ( y , z ) | 2
[ ( d + δ m ) ε 0 μ 0 ω 0 r n eff n c + ( d + δ m ) ε 0 μ 0 n eff ω 0 r n c ] × [ 1 + tan 2 ( n eff ω 0 r ε 0 μ 0 ( d + δ m ) ] = 2 ω 0 r C g Z 0 n c 2 ω 0 r Z 0 C g n c 2 C g Z 0 ω 0 r n c
ζ ω ω 0 r n c = ζ n n eff n c + ζ C C g n c + ζ Z Z 0 n c
ζ ω = ( d + δ m c 0 ) n eff ( 1 + 4 ω 0 r 2 C g 2 Z 0 2 ) + 2 C g Z 0
ζ n = ( d + δ m c 0 ) n eff ( 1 + 4 ω 0 r 2 C g 2 Z 0 2 )
ζ C = 2 ω 0 r Z 0
ζ Z = 2 ω 0 r C g
C g n c = ( w t g ) ε c n c = 2 ε 0 ( w t g ) n c
ω 0 r n c = ζ ω 1 [ 4 ( w t g ) ω 0 r Z 0 ] n c + ζ ω 1 ( ζ n n eff n c + ζ Z Z 0 n c )
ω 0 r n c [ 2 w t c 0 ω 0 r g ( d + δ m ) n eff ] 2 Z 0 n c + Z 0 n c n c 2 1 + ( 2 w t g 1 ω 0 r Z 0 ) 2 n c 2 ω 0 r n eff n eff n c
λ 0 r n c = ( 2 π c 0 ω 0 r 2 ) ω 0 r n c
λ 0 r n c [ 2 w t c 0 λ 0 r g ( d + δ m ) n eff ] 2 Z 0 n c + Z 0 n c n c 2 1 + ( 4 π wt g 1 c 0 λ 0 r Z 0 ) 2 n c 2 + λ 0 r n eff n eff n c
C g = ( 2 C 1 1 + C 2 1 ) 1
C 1 = ε a ( w t a )
C 2 = ε c ( w t g 2 a )
C g = ε a ε c w t 2 ( ε a ε c ) a + ε a g
ζ ω ω 0 r a = ζ n n eff a + ζ C C g a + ζ Z Z 0 a
C g a = 2 ε 0 ε r , c ε r , a ( ε r , a ε r , c ) w t [ 2 ( ε r , a ε r , c ) a + ε r , a g ] 2
ω 0 r a = 2 ε 0 ε r , c ε r , a ( ε r , a ε r , c ) w t [ 2 ( ε r , c ε r , a ) a + ε r , a g ] 2 ζ ω 1 ζ C ω 0 r Z 0 + ζ ω 1 ( ζ n n eff a + ζ Z Z 0 a )
λ 0 r a = ( 2 π c 0 ω 0 r 2 ) ω 0 r a
λ 0 r a = 4 ε 0 ε r , c ε r , a ( ε r , c ε r , a ) w t [ 2 ( ε r , c ε r , a ) a + ε r , a g ] 2 ζ ω 1 ζ C λ 0 r Z 0 ζ ω 1 λ 0 r 2 2 π c 0 ( ζ n n eff a + ζ Z Z 0 a )
cot ( n eff ω 0 r ε 0 μ 0 ( d + δ m ) ) = 0
λ 0 r n c = λ 0 r n eff n eff n c
λ 0 r a = λ 0 r n eff n eff a

Metrics