Abstract

We present a novel and cost-effective technique – interleaved optical coherence tomography (iOCT) – to enhance the imaging speed of swept source OCT systems by acquiring data from multiple lateral positions simultaneously during a single wavelength sweep, using a single detector and a virtually imaged phase array (VIPA) as a multi-band demultiplexer. This technique uses spectral encoding to convert coherence length into higher imaging speed; the speed enhancement factor is independent of the source speed or center wavelength, and the effective A-scan rate scales linearly with sweep speed. The optical configuration requires only a change in the sample arm of a traditional OCT system and preserves the axial resolution and fall-off characteristic of a traditional SS-OCT using the same light source. Using 10kHz, 20kHz and 100kHz sources we provide a first demonstration of image speed enhancement factors of up to 12, 6 and 10, respectively, which yield effective A-scan rates of 120kHz, 120kHz and 1MHz for B-scan imaging, with a sensitivity of up to 82.5 dB. We also show that iOCT can image faster dynamics than traditional OCT B-scan imaging and is capable of 3D biological imaging. The iOCT concept suggests a new route to high-speed OCT imaging for laser developers: that is, by focusing on improving the coherence length and linewidth of existing and emerging sources. Hence, iOCT is a nice complement to ongoing research and commercial efforts to enable faster imaging through development of lasers with faster sweep rates, and offers new hope for existing sources with slow sweep rates and potential for enhancement of coherence length to compete with faster sources to achieve high-speed OCT.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
    [CrossRef] [PubMed]
  3. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  4. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996).
    [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  6. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  7. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
    [CrossRef] [PubMed]
  8. D.-H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express3(12), 3067–3086 (2012).
    [CrossRef] [PubMed]
  9. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35(20), 3432–3434 (2010).
    [CrossRef] [PubMed]
  10. R. N. Graf, W. J. Brown, and A. Wax, “Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source,” Opt. Lett.33(12), 1285–1287 (2008).
    [CrossRef] [PubMed]
  11. R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
    [CrossRef] [PubMed]
  12. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  13. S. M. R. Motaghian Nezam, “High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography,” Opt. Lett.33(15), 1741–1743 (2008).
    [CrossRef] [PubMed]
  14. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
    [CrossRef] [PubMed]
  15. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  16. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  18. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]
  19. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express14(24), 11575–11584 (2006).
    [CrossRef] [PubMed]
  20. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express20(18), 19612–19617 (2012).
    [CrossRef] [PubMed]
  21. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
    [CrossRef]
  22. V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
    [CrossRef]
  23. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).
  24. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
    [CrossRef]
  25. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012).
    [CrossRef] [PubMed]
  26. V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Micromachined array tip for multifocus fiber-based optical coherence tomography,” Opt. Lett.29(15), 1754–1756 (2004).
    [CrossRef] [PubMed]
  27. K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
    [CrossRef] [PubMed]
  28. C. Zhou, A. Alex, J. Rasakanthan, and Y. Ma, “Space-division multiplexing optical coherence tomography,” Opt. Express21(16), 19219–19227 (2013).
    [CrossRef] [PubMed]
  29. M. K. K. Leung, A. Mariampillai, B. A. Standish, K. K. C. Lee, N. R. Munce, I. A. Vitkin, and V. X. D. Yang, “High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography,” Opt. Lett.34(18), 2814–2816 (2009).
    [CrossRef] [PubMed]
  30. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express15(5), 2432–2444 (2007).
    [CrossRef] [PubMed]
  31. D. Yelin, B. E. Bouma, N. Iftimia, and G. J. Tearney, “Three-dimensional spectrally encoded imaging,” Opt. Lett.28(23), 2321–2323 (2003).
    [CrossRef] [PubMed]
  32. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
    [CrossRef] [PubMed]
  33. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
    [CrossRef]
  34. A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt.42(20), 4152–4155 (2003).
    [CrossRef] [PubMed]
  35. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011).
    [CrossRef] [PubMed]
  36. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett.38(3), 338–340 (2013).
    [CrossRef] [PubMed]
  37. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  38. B. Braaf, K. A. Vermeer, V. A. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011).
    [CrossRef] [PubMed]
  39. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  40. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
    [CrossRef] [PubMed]

2013

2012

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012).
[CrossRef] [PubMed]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express20(18), 19612–19617 (2012).
[CrossRef] [PubMed]

D.-H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express3(12), 3067–3086 (2012).
[CrossRef] [PubMed]

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
[CrossRef]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

2000

1997

1996

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996).
[CrossRef] [PubMed]

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

1993

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Alex, A.

Bajraszewski, T.

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Bashkansky, M.

Baumann, B.

Biedermann, B. R.

Bonin, T.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Braaf, B.

Brown, W. J.

Bückle, R.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Bustamante, T.

Cable, A.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
[CrossRef]

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Cable, A. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chinn, S. R.

Choi, D.-H.

Choi, W.

Cole, G.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
[CrossRef]

Cole, G. D.

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Crawford, M.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

de Boer, J.

de Boer, J. F.

Derickson, D.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

Dhalla, A.-H.

Duker, J. S.

Eigenwillig, C. M.

Elsner, P.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Ensher, J.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

Fard, A.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Franke, G.

Fu, G.

Fujimoto, J.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
[CrossRef]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
[CrossRef] [PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett.38(3), 338–340 (2013).
[CrossRef] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Gao, B. Z.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Goda, K.

Goodwin, R.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Gora, M.

Gordon, M. L.

Graf, R. N.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hagen-Eggert, M.

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Hendargo, H. C.

Hiro-Oka, H.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Huang, D.

Huber, R.

Hüttmann, G.

Iftimia, N.

Izatt, J. A.

Jalali, B.

Jayaraman, V.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
[CrossRef] [PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett.38(3), 338–340 (2013).
[CrossRef] [PubMed]

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
[CrossRef]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Jiang, J.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
[CrossRef] [PubMed]

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
[CrossRef]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Kaatz, M.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Kaluzny, B. J.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Karnowski, K.

Kim, D. Y.

Klein, T.

Ko, T. H.

Koch, P.

Koehler, M. J.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

König, K.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Kowalczyk, A.

Kuo, A.

Lee, K. K. C.

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Leung, M. K. K.

Li, H.

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt.42(20), 4152–4155 (2003).
[CrossRef] [PubMed]

Lin, C. P.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J. J.

Lo, S.

Lu, C. D.

Ma, Y.

Malik, O.

Marcon, N. E.

Mariampillai, A.

Markwald, R. R.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

McKenzie, G.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

McNabb, R. P.

Minneman, M. P.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

Moon, S.

Motaghian Nezam, S. M. R.

Motz, J. T.

Munce, N.

Munce, N. R.

Nankivil, D.

Oh, W.-Y.

Ohbayashi, K.

Pekar, J.

Potsaid, B.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
[CrossRef] [PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett.38(3), 338–340 (2013).
[CrossRef] [PubMed]

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
[CrossRef]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Puliafito, C. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Quach, A.

Rasakanthan, J.

Reckfort, J.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Reintjes, J.

Schuman, J. S.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shepherd, N.

Shimizu, K.

Shishkov, M.

Sicam, V. A.

Speicher, M.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Srinivasan, V. J.

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

Szkulmowska, A.

Szkulmowski, M.

Tearney, G.

Tearney, G. J.

Vakoc, B.

Vakoc, B. J.

van Meurs, J. C.

van Zeeburg, E.

Vega, A.

Vermeer, K. A.

Vitkin, I. A.

Wang, R.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Wax, A.

Weiner, A. M.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt.42(20), 4152–4155 (2003).
[CrossRef] [PubMed]

Welzel, J.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

White, W. M.

Wieser, W.

Wilson, B. C.

Wojtkowski, M.

Xiao, S.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

Yang, V. X. D.

Yelin, D.

Yuan, X.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Yun, J. X.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Yun, S.

Yun, S. H.

Zhou, C.

Appl. Opt.

Biomed. Opt. Express

IEEE J. Quantum Electron.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

J Biophotonics

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express

B. Braaf, K. A. Vermeer, V. A. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express14(24), 11575–11584 (2006).
[CrossRef] [PubMed]

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express15(5), 2432–2444 (2007).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express20(18), 19612–19617 (2012).
[CrossRef] [PubMed]

C. Zhou, A. Alex, J. Rasakanthan, and Y. Ma, “Space-division multiplexing optical coherence tomography,” Opt. Express21(16), 19219–19227 (2013).
[CrossRef] [PubMed]

Opt. Lett.

R. N. Graf, W. J. Brown, and A. Wax, “Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source,” Opt. Lett.33(12), 1285–1287 (2008).
[CrossRef] [PubMed]

S. M. R. Motaghian Nezam, “High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography,” Opt. Lett.33(15), 1741–1743 (2008).
[CrossRef] [PubMed]

V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Micromachined array tip for multifocus fiber-based optical coherence tomography,” Opt. Lett.29(15), 1754–1756 (2004).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, N. Iftimia, and G. J. Tearney, “Three-dimensional spectrally encoded imaging,” Opt. Lett.28(23), 2321–2323 (2003).
[CrossRef] [PubMed]

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35(20), 3432–3434 (2010).
[CrossRef] [PubMed]

M. K. K. Leung, A. Mariampillai, B. A. Standish, K. K. C. Lee, N. R. Munce, I. A. Vitkin, and V. X. D. Yang, “High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography,” Opt. Lett.34(18), 2814–2816 (2009).
[CrossRef] [PubMed]

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012).
[CrossRef] [PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett.38(3), 338–340 (2013).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
[CrossRef] [PubMed]

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

Proc. SPIE

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” Proc. SPIE8276, 82760D, 82760D-11 (2012).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with > 100nm tuning range,” CLEO:2011-Laser Applications to Photonic Applications 1–2 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

System schematic and comparison of SS-OCT, SEE, and iOCT. The three methods differ in how they create B-scans only in the design of the sample arms: SS-OCT uses a fast scanning deflector (e.g., mirror); SEE uses a grating; iOCT uses a multi-band demultiplexer (MBDX). Example data collection schemes for the three methods are shown as swept-source wavelength output vs. time (sweep time ts). Letters A, B, and C correspond to different lateral locations (different A-scans), whose order of illumination depends on the system scheme.

Fig. 2
Fig. 2

Experimental setup for the sample arm of combined iOCT and SS-OCT. CL: cylindrical lens; L: lens; VIPA: virtually imaged phased array; θin: incidence angle range; f: focal length; IP: image plane; FM: folding mirror; G: galvanometer. FM enables switching between the iOCT and SS-OCT systems. Optical power loss for forward and backward travel are shown atop the schematic. The dominant loss occurs during back-coupling to the VIPA.

Fig. 3
Fig. 3

Processing steps for iOCT. The raw, multiplexed interferogram (a) and its enlarged view (dashed range) is shown with the wavelength sets for two (out of six) lateral points highlighted in blue and red (b). Both are from the same depth but have slightly different amplitudes due to slight differences in the coupling efficiency of the objective at different angles. Raw data underwent DC removal, resampling (Santec only), and Hanning window processing, followed by oversampling to reduce the distortion due to abrupt differences in intensity between adjacent lateral points. The interferogram is demultiplexed to produce separate interferograms comprising data from a given wavelength subset; two examples are shown (c, d). Dispersion compensation is done by applying a phase correction factor. After the FFT (applied separately to each interferogram), A-scans from adjacent lateral positions are aligned to create a B-scan image. Finally, an inverse-Gaussian weighting function corrects the spectral-dependent intensity response function of the VIPA (e - uncorrected, f - corrected).

Fig. 4
Fig. 4

The output of the iOCT system for various sweep rates, 10kHz (a), 20kHz (c), and 100kHz (e), with a blocked reference arm and a sample arm comprising a reflective mirror covered by a slit. The left column shows how the data for a single lateral location spans the entire source spectrum. The right column [Figs. 4(b), 4(d), 4(f)] shows an enlarged view of the data on the left for two lateral locations (solid black or dashed blue) Axsun data were acquired without the k-clock.

Fig. 5
Fig. 5

B-scan images acquired from a test sample comprising a mirror positioned behind a glass coverslip for three sweep rates: 10kHz (a), 20kHz (b), and 100kHz (c). The number of sampled A-scans per B-scan is 12, 6 and 10, whereas the numbers of resolvable A-scans are 4, 4 and 8, respectively. The two layers denoted CS are the two surfaces of the cover slip, and the white arrow denotes the surface of the mirror, which approaches from the left and is then moved downward. The five frames in each set are separate B-scans, each acquired during a single wavelength sweep and showing the mirror positioned differently in x and z. Axsun data were acquired without the k-clock. Scale bar: 50μm × 50μm.

Fig. 6
Fig. 6

A-scans of a mirror at two different lateral locations in iOCT (a, b), and at one lateral location in SS-OCT (c: showing the same imaging range as in iOCT) for the 100-kHz source. FWHM axial resolution measured at a single depth (solid) is indicated in (a-c). The full ranging depth for SS-OCT and its fall-off curve are shown in (d), while the vertical red indicates the maximum imaging depth in iOCT. The fall-off is large in the standard image because of significant digital oversampling.

Fig. 7
Fig. 7

iOCT frequency responses to the motion of piezoelectric transducer: phase of the piezo as a function of time at three different operating frequencies of the piezo for the 10-kHz sweep rate source (a), and the FFT of these data for 15 different frequencies of the piezo (ranging from 600Hz to 64.1kHz, numbered in ascending order from 1 to 15) for the 10kHz (b), 20kHz (c), and 100kHz (d) sweep rate sources. Aliased responses at each sweep rate are colored red (i.e., > 5, 10 or 50kHz, respectively). Numbered peaks above 10 and 14 were invisible in (b) and (c), respectively, due to the large distortion from aliasing.

Fig. 8
Fig. 8

Biological imaging with iOCT. Individual B-scans from a volume data set of a pepper seed (a-f) and a human finger (g-i, only 3 B-scans out of 6 are shown) collected using a single, 1D galvanometer scan with the 1060nm swept source. Each volume set consists of 3,000 A-scans from 500 sweeps with 6 lateral points collected in each sweep. Differential appearance of the crack or the sweat glands confirms differences in the images from different lateral points (highlighted with arrows). Artifacts due to multiple scattering in the VIPA are also slightly visible at the bottom of some images. A 3-D volume data set of a pepper seed, consisting of 192,000 A-scans (400 and 480 in the x and y directions, respectively), collected from a 2D galvo scan (400 × 80 sweeps with 6 lateral points collected simultaneously in each sweep) in 0.32 sec, is displayed as orthogonal slices in 3 axes (j) and a rendered 3D view (k) (Scale bar: 500μm × 500μm).

Tables (1)

Tables Icon

Table 1 Specifications of the Santec and the Axsun system

Metrics